[1] Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock - basics of diagnosis, pathophysiology and clinical decision making[J]. Med Clin North Am, 2020, 104(4):573-585. DOI: 10.1016/j.mcna.2020.02.011.
[2] Sweeney DA, Wiley BM. Integrated multiorgan bedside ultrasound for the diagnosis and management of sepsis and septic shock[J]. Semin Respir Crit Care Med, 2021, 42(5):641-649. DOI: 10.1055/s-0041-1733896.
[3] Schupp T, Weidner K, Rusnak J, et al. Fibrinogen reflects severity and predicts outcomes in patients with sepsis and septic shock[J]. Blood Coagul Fibrinolysis, 2023, 34(3):161-170. DOI: 10.1097/MBC.0000000000001197.
[4] Bahloul M, Bradii S, Turki M, et al. The value of sepsis biomarkers and their kinetics in the prognosis of septic shock due to bacterial infections[J]. Anaesthesiol Intensive Ther, 2021, 53(4):312-318. DOI: 10.5114/ait.2021.108624.
[5] Zheng Y, Peng L, He Z, et al. Identification of differentially expressed genes, transcription factors, microRNAs and pathways in neutrophils of sepsis patients through bioinformatics analysis[J]. Cell Mol Biol (Noisy-le-grand), 2022, 67(5):405-420. DOI: 10.14715/cmb/2021.67.5.53.
[6] 徐有伟,朴元林,冯学桢.长链非编码RNA核内小RNA宿主基因16靶向调控微小RNA-16-5p对高糖诱导足细胞损伤的影响及其机制研究[J].中国糖尿病杂志,2021,29(11):843-849. DOI:10.3969/j.issn.1006-6187.2021.11.009.
[7] Li HX, Ni JJ, Zhang LX, et al. Gas6 exerts neuroprotective effects via restoring the blood-brain barrier in mice with sepsis-associated encephalopathy[J]. Ann Clin Lab Sci, 2023, 53(3):409-417.
[8] Assimakopoulos SF, Akinosoglou K, de Lastic AL, et al. The prognostic value of endotoxemia and intestinal barrier biomarker ZO-1 in bacteremic sepsis[J]. Am J Med Sci, 2020, 359(2):100-107. DOI: 10.1016/j.amjms.2019. 10.006.
[9] 纪文焘,孟岩,薄禄龙,等.«拯救脓毒症运动:脓毒症与感染性休克治疗国际指南2021版»的解读[J].中华麻醉学杂志,2021,41(12):1409-1413. DOI:10.3760/cma.j.cn131073. 20211210.01201.
[10] Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system[J]. Crit Care Med, 1985, 13(10):818-829.
[11] Ferreira FL, Bota DP, Bross A, et al. Serial evaluation of the SOFA score to predict outcome in critically ill patients[J]. JAMA, 2001, 286(14):1754-1758. DOI: 10.1001/jama.286.14.1754.
[12] 孟鹏飞,石正松,陈亚君,等.血清乳酸、降钙素原、内毒素对脓毒症及感染性休克预后的预测价值[J].分子诊断与治疗杂志,2023,15(3):527-530,535. DOI:10.3969/j.issn.1674-6929.2023.03.041.
[13] 陈文冲,李德平,罗建立,等.心肌损伤标志物和序贯器官衰竭评估评分评估感染性休克患者预后的价值分析[J].广西医学,2021,43(2):167-169,196. DOI:10.11675/j.issn.0253-4304.2021.02.08.
[14] Shomali N, Mahmoodpoor A, Abbas Abad AN, et al. The relationship between extracellular/intracellular microRNAs and TLRs may be used as a diagnostic and therapeutic approach in sepsis[J]. Immunol Invest, 2022, 51(1):154-169. DOI: 10.1080/08820139.2020.1817067.
[15] 孙文杰,霍景瑞,贾力,等.miRNA在脓毒症治疗中研究进展[J].中国老年学杂志,2023,43(5):1256-1260. DOI:10.3969/j.issn.1005-9202.2023.05.062.
[16] Song X, Li L, Zhao Y, et al. Down-regulation of long non-coding RNA XIST aggravates sepsis-induced lung injury by regulating miR-16-5p[J]. Hum Cell, 2021, 34(5):1335-1345. DOI: 10.1007/s13577-021-00542-y.
[17] 陈旋.脓毒症并发急性肾损伤患者外周血单个核细胞中微小RNA-16-5 p、干扰素诱导跨膜蛋白3表达及临床意义[J].临床肾脏病杂志,2023,23(1):45-51. DOI:10.3969/j.issn.1671-2390.2023.01.008.
[18] Kuo WT, Zuo L, Odenwald MA, et al. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair[J]. Gastroenterology, 2021, 161(6):1924-1939. DOI: 10.1053/j.gastro.2021. 08.047.
[19] Kuo WT, Odenwald MA, Turner JR, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival[J]. Ann N Y Acad Sci, 2022, 1514(1):21-33. DOI: 10.1111/nyas.14798.
[20] 桑珍珍,高杰,贾春梅,等.血浆闭锁小带蛋白联合血清降钙素原检测对感染性休克患者预后评估的临床价值[J].中国急救医学,2021,41(4):307-311. DOI:10.3969/j.issn.1002- 1949.2021.04.006.
|