[1] Alicic R, Nicholas SB. Diabetic kidney disease back in focus: management field guide for health care professionals in the 21st century[J]. Mayo Clin Proc, 2022, 97(10):1904-1919. DOI: 10.1016/j.mayocp.2022.05.003.
[2] Tuttle KR, Agarwal R, Alpers CE, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease[J]. Kidney Int, 2022, 102(2):248-260. DOI: 10.1016/j.kint.2022.05.012.
[3] Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2):88. DOI: 10.1038/s41419-020-2298-2.
[4] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042.
[5] van Swelm RPL, Wetzels JFM, Swinkels DW. The multifaceted role of iron in renal health and disease[J]. Nat Rev Nephrol, 2020, 16(2):77-98. DOI: 10.1038/s41581-019-0197-5.
[6] Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3):369-379. DOI: 10.1038/cdd.2015.158.
[7] Qiu Y, Cao Y, Cao W, et al. The application of ferroptosis in diseases[J]. Pharmacol Res, 2020, 159:104919. DOI: 10.1016/j.phrs.2020.104919.
[8] Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1):49. DOI: 10.1038/s41392-020-00428-9.
[9] Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8):1425-1428. DOI: 10.1080/15548627.2016. 1187366.
[10] Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6):478-490. DOI: 10.1016/j.tcb.2020.02.009.
[11] Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9):1021-1032. DOI: 10.1038/cr.2016.95.
[12] Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2):273-285. DOI: 10.1016/j.cell.2017.09.021.
[13] Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1):81-90. DOI: 10.1038/nchembio.2238.
[14] Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98. DOI: 10.1038/nchembio.2239.
[15] Sun Y, Xia X, Basnet D, et al. Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases[J]. Front Aging Neurosci, 2022, 14:904152. DOI: 10.3389/fnagi.2022.904152.
[16] Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23:101107. DOI: 10.1016/j.redox.2019.101107.
[17] Badgley MA, Kremer DM, Maurer HC, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice[J]. Science, 2020, 368(6486):85-89. DOI: 10.1126/science.aaw9872.
[18] Brigelius-Flohé R, Maiorino M. Glutathione peroxidases[J]. Biochim Biophys Acta, 2013, 1830(5):3289-3303. DOI: 10.1016/j.bbagen.2012.11.020.
[19] Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019, 133:144-152. DOI: 10.1016/j.freeradbiomed.2018.09.014.
[20] Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2):317-331. DOI: 10.1016/j.cell.2013.12.010.
[21] Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation[J]. Trends Cell Biol, 2016, 26(3):165-176. DOI: 10.1016/j.tcb.2015.10.014.
[22] Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545):57-62. DOI: 10.1038/nature14344.
[23] Anandhan A, Dodson M, Schmidlin CJ, et al. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis[J]. Cell Chem Biol, 2020, 27(4):436-447. DOI: 10.1016/j.chembiol.2020.03.011.
[24] Kerins MJ, Ooi A. The roles of NRF2 in modulating cellular iron homeostasis[J]. Antioxid Redox Signal, 2018, 29(17):1756-1773. DOI: 10.1089/ars.2017.7176.
[25] Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1):173-184. DOI: 10.1002/hep.28251.
[26] McCarthy RC, Sosa JC, Gardeck AM, et al. Inflammation-induced iron transport and metabolism by brain microglia[J]. J Biol Chem, 2018, 293(20):7853-7863. DOI: 10.1074/jbc.RA118.001949.
[27] Jiang B, Liu G, Zheng J, et al. Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney[J]. Sci Rep, 2016, 6:39470. DOI: 10.1038/srep39470.
[28] van Raaij SEG, Srai SKS, Swinkels DW, et al. Iron uptake by ZIP8 and ZIP14 in human proximal tubular epithelial cells[J]. Biometals, 2019, 32(2):211-226. DOI: 10.1007/s10534-019-00183-7.
[29] Fujishiro H, Yano Y, Takada Y, et al. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells[J]. Metallomics, 2012, 4(7):700-708. DOI: 10.1039/c2mt20024d.
[30] Yao L, Liang X, Qiao Y, et al. Mitochondrial dysfunction in diabetic tubulopathy[J]. Metabolism, 2022, 131:155195. DOI: 10.1016/j.metabol.2022.155195.
[31] Wu K, Fei L, Wang X, et al. ZIP14 is involved in iron deposition and triggers ferroptosis in diabetic nephropathy[J]. Metallomics, 2022, 14(7):mfac034. DOI: 10.1093/mtomcs/mfac034.
[32] Kim S, Kang SW, Joo J, et al. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions[J]. Cell Death Dis, 2021, 12(2):160. DOI: 10.1038/s41419-021-03452-x.
[33] Huang B, Wen W, Ye S. Dapagliflozin ameliorates renal tubular ferroptosis in diabetes via SLC40A1 stabilization[J]. Oxid Med Cell Longev, 2022, 2022:9735555. DOI: 10.1155/2022/9735555.
[34] Kim JH, Lewin TM, Coleman RA. Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones[J]. J Biol Chem, 2001, 276(27):24667-24673. DOI: 10.1074/jbc.M010793200.
[35] Wang Y, Bi R, Quan F, et al. Ferroptosis involves in renal tubular cell death in diabetic nephropathy[J]. Eur J Pharmacol, 2020, 888:173574. DOI: 10.1016/j.ejphar.2020.173574.
[36] Khan ZA, Barbin YP, Cukiernik M, et al. Heme-oxygenase-mediated iron accumulation in the liver[J]. Can J Physiol Pharmacol, 2004, 82(7):448-456. DOI: 10.1139/y04-052.
[37] Li X, Yu J, Gong L, et al. Heme oxygenase-1(HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway[J]. Free Radic Biol Med, 2021, 165:243-253. DOI: 10.1016/j.freeradbiomed.2021. 01.028.
[38] Feng X, Wang S, Sun Z, et al. Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice[J]. Front Endocrinol (Lausanne), 2021, 12:626390. DOI: 10.3389/fendo.2021.626390.
[39] Diez-Sampedro A, Lenz O, Fornoni A. Podocytopathy in diabetes: a metabolic and endocrine disorder[J]. Am J Kidney Dis, 2011, 58(4):637-646. DOI: 10.1053/j.ajkd.2011.03.035.
[40] Dai H, Liu Q, Liu B. Research progress on mechanism of podocyte depletion in diabetic nephropathy[J]. J Diabetes Res, 2017, 2017:2615286. DOI: 10.1155/2017/2615286.
[41] 关锡梅,解勇圣,倪伟建,等.Nrf2/HO-1/GPX4对高糖诱导足细胞铁死亡的影响及小檗碱的干预机制研究[J].中国药理学通报,2021,37(3):396-403. DOI:10.3969/j.issn.1001- 1978.2021.03.018.
[42] Lu B, Chen XB, Hong YC, et al. Identification of PRDX6 as a regulator of ferroptosis[J]. Acta Pharmacol Sin, 2019, 40(10):1334-1342. DOI: 10.1038/s41401-019-0233-9.
[43] Chhunchha B, Kubo E, Singh P, et al. Sumoylation-deficient Prdx6 repairs aberrant Sumoylation-mediated Sp1 dysregulation-dependent Prdx6 repression and cell injury in aging and oxidative stress[J]. Aging (Albany NY), 2018, 10(9):2284-2315. DOI: 10.18632/aging.101547.
[44] Zhang Q, Hu Y, Hu JE, et al. Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis[J]. Life Sci, 2021, 278:119529. DOI: 10.1016/j.lfs.2021.119529.
[45] Tung CW, Hsu YC, Shih YH, et al. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy[J]. Nephrology (Carlton), 2018, 23 Suppl 4:32-37. DOI: 10.1111/nep.13451.
[46] Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease[J]. Nat Rev Rheumatol, 2012, 8(4):195-202. DOI: 10.1038/nrrheum.2011.222.
[47] Wu Y, Zhao Y, Yang HZ, et al. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose[J]. Biosci Rep, 2021, 41(2):BSR20202924. DOI: 10.1042/BSR20202924.
[48] Forst T, Mathieu C, Giorgino F, et al. New strategies to improve clinical outcomes for diabetic kidney disease[J]. BMC Med, 2022, 20(1):337. DOI: 10.1186/s12916-022-02539-2.
|