[1] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet,2009,10(3):155-159. DOI:10.1038/nrg2521.
[2] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nat Rev Genet,2004,5(7):522-531. DOI:10.1038/nrg1379.
[3] Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy[J]. Cell Cycle,2005,4(9):1179-1184. DOI:10.4161/cc.4.9.2032.
[4] Ambros V. The functions of animal microRNAs[J]. Nature,2004,431(7006):350-355. DOI:10.1038/nature02871.
[5] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2):281-297. DOI:10.1016/s0092-8674(04)00045-5.
[6] Lai EC. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation[J]. Nat Genet,2002,30(4):363-364. DOI:10.1038/ng865.
[7] Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer[J]. Nat Rev Cancer,2006,6(4):259-269. DOI:10.1038/nrc1840.
[8] Hammond SM. MicroRNAs as tumor suppressors[J].Nat Genet,2007,39(5):582-583. DOI:10.1038/ng0507-582.
[9] Croce CM. Causes and consequences of microRNA dysregulation in cancer[J].Nat Rev Genet,2009,10(10):704-714. DOI:10.1038/nrg2634.
[10] 杨鑫苗,张永强. miRNA调控实体肿瘤发生发展机制研究进展[J]. 现代肿瘤医学,2020,28(9):1587-1589. DOI:10.3969/j.issn.1672-4992.2020.09.038.
[11] Sedani A, Cooper DN, Upadhyaya M. An emerging role for microRNAs in NF1 tumorigenesis[J]. Hum Genomics,2012,6(1):23. DOI:10.1186/1479-7364-6-23.
[12] Slabáková E, Culig Z, Remšík J, et al. Alternative mechanisms of miR-34a regulation in cancer[J]. Cell Death Dis,2017,8(10):e3100. DOI:10.1038/cddis. 2017.495.
[13] Liu H, Deng H, Zhao Y, et al. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling[J]. J Exp Clin Cancer Res,2018,37(1):279. DOI:10.1186/s13046-018-0950-9.
[14] Xu Y, Guo B, Liu X, et al. miR-34a inhibits melanoma growth by targeting ZEB1[J]. Aging (Albany NY),2021,13(11):15538-15547. DOI:10.18632/aging.203114.
[15] Subramanian S, Thayanithy V, West RB, et al. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours[J]. J Pathol,2010,220(1):58-70. DOI:10.1002/path.2633.
[16] Sheng L, He P, Yang X, et al. miR-612 negatively regulates colorectal cancer growth and metastasis by targeting AKT2[J]. Cell Death Dis,2015,6(7):e1808. DOI:10.1038/cddis.2015.184.
[17] Liu Y, Liu DL, Dong LL, et al. miR-612 suppresses stem cell-like property of hepatocellular carcinoma cells by modulating Sp1/Nanog signaling[J]. Cell Death Dis,2016,7(9):e2377. DOI:10.1038/cddis.2016.282.
[18] Wang M, Wang Z, Zhu X, et al. NFKB1-miR-612-FAIM2 pathway regulates tumorigenesis in neurofibromatosis type 1[J]. In Vitro Cell Dev Biol Anim,2019,55(7):491-500. DOI:10.1007/s11626-019-00370-3.
[19] Metheny LJ, Cappione AJ, Skuse GR. Genetic and epigenetic mechanisms in the pathogenesis of neurofibromatosis type I[J]. J Neuropathol Exp Neurol,1995,54(6):753-60. DOI:10.1097/00005072- 199511000-00001.
[20] Paschou M, Doxakis E. Neurofibromin 1 is a miRNA target in neurons[J]. PLoS One,2012,7(10):e46773. DOI:10.1371/journal.pone.0046773.
[21] Chai G, Liu N, Ma J, et al. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1[J]. Cancer Sci,2010,101(9):1997-2004. DOI:10.1111/j.1349-7006. 2010.01616.x.
[22] Lu H, Liu P, Pang Q. MiR-27a-3p/miR-27b-3p Promotes Neurofibromatosis Type 1 via Targeting of NF1[J].J Mol Neurosci,2021,71(11):2353-2363. DOI:10.1007/s12031-020-01779-2.
[23] Gong M, Ma J, Li M, et al. MicroRNA-204 critically regulates carcinogenesis in malignant peripheral nerve sheath tumors[J].Neuro Oncol,2012,14(8):1007-1017. DOI:10.1093/neuonc/nos124.
[24] Evans DG, Huson SM, Donnai D, et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity[J].J Med Genet,1992,29(12):841-846. DOI:10.1136/jmg.29.12.841.
[25] Trofatter JA, MacCollin MM, Rutter JL, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor[J].Cell,1993,72(5):791-800. DOI:10.1016/0092-8674(93)90406-g.
[26] Torres-Martin M, Lassaletta L, de Campos JM, et al. Global profiling in vestibular schwannomas shows critical deregulation of microRNAs and upregulation in those included in chromosomal region 14q32[J].PLoS One,2013,8(6):e65868. DOI:10.1371/journal.pone.0065868.
[27] Yu B, Zhou S, Wang Y, et al. miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury[J].J Cell Sci,2012,125(Pt 11):2675-2683. DOI:10.1242/jcs.098996.
[28] Yuan Q, Loya K, Rani B, et al. MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration[J]. Hepatology,2013,57(1):299-310. DOI:10.1002/hep.25984.
[29] Zhao L, Yuan Y, Li P, et al. miR-221-3p inhibits schwann cell myelination[J].Neuroscience,2018,379:239-245. DOI:10.1016/j.neuroscience.2018.03.019.
[30] Stangerup SE, Caye-Thomasen P. Epidemiology and natural history of vestibular schwannomas[J].Otolaryngol Clin North Am,2012,45(2):257-268. DOI:10.1016/j.otc.2011.12.008.
[31] Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Ahmadinejad F, et al. MicroRNAs: effective elements in ear-related diseases and hearing loss[J].Eur Arch Otorhinolaryngol,2017,274(6):2373-2380. DOI:10.1007/s00405-017-4470-6.
[32] Friedland DR, Eernisse R, Erbe C, et al. Cholesteatoma growth and proliferation: posttranscriptional regulation by microRNA-21[J].Otol Neurotol,2009,30(7):998-1005. DOI:10.1097/MAO.0b013e3181b4e91f.
[33] Cioffi JA, Yue WY, Mendolia-Loffredo S, et al. MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival[J].Otol Neurotol,2010,31(9):1455-1462. DOI:10.1097/MAO.0b013e3181f20655.
[34] Sass HCR, Hansen M, Borup R, et al. Tumor miRNA expression profile is related to vestibular schwannoma growth rate[J].Acta Neurochir (Wien),2020,162(5):1187-1195. DOI:10.1007/s00701-020-04238-4.
[35] Shi X, Xiao L, Mao X, et al. miR-205-5p mediated downregulation of PTEN contributes to cisplatin resistance in C13K human ovarian cancer cells[J].Front Genet,2018,9:555. DOI:10.3389/fgene.2018.00555.
[36] Ghorbanmehr N, Gharbi S, Korsching E, et al. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer[J].Prostate,2019,79(1):88-95. DOI:10.1002/pros.23714.
[37] De Cola A, Lamolinara A, Lanuti P, et al. MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells[J].Cell Death Dis,2018,9(8):821. DOI:10.1038/s41419-018-0854-9.
[38] Li L, Li S. miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1[J].Oncol Lett,2018,16(2):1715-1721. DOI:10.3892/ol.2018.8862.
[39] Chaudhary AK, Mondal G, Kumar V, et al. Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205[J].Cancer Lett,2017,402:1-8. DOI:10.1016/j.canlet.2017.05.007.
[40] Yao L, Shi W, Gu J. Micro-RNA 205-5p is involved in the progression of gastric cancer and targets phosphatase and tensin homolog (PTEN) in SGC-7901 human gastric cancer cells[J].Med Sci Monit,2019,25:6367-6377. DOI:10.12659/MSM.915970.
[41] Xian XS, Wang YT, Jiang XM. Propofol inhibits proliferation and invasion of stomach cancer cells by regulating miR-205/YAP1 axis[J].Cancer Manag Res,2020,12:10771-10779. DOI:10.2147/CMAR.S270344.
[42] Yin X, Huo Z, Yan S, et al. MiR-205 inhibits sporadic vestibular schwannoma cell proliferation by targeting cyclin-dependent kinase 14[J].World Neurosurg,2021,147:e25-e31. DOI:10.1016/j.wneu.2020.11.043.
[43] Antinheimo J, Sankila R, Carpén O, et al. Population-based analysis of sporadic and type 2 neurofibromatosis-associated meningiomas and schwannomas[J]. Neurology,2000,54(1):71-76. DOI:10.1212/wnl.54.1.71.
[44] Piotrowski A, Xie J, Liu YF, et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas[J].Nat Genet,2014,46(2):182-187. DOI:10.1038/ng.2855.
[45] Rivera B, Nadaf J, Fahiminiya S, et al. DGCR8 microprocessor defect characterizes familial multinodular goiter with schwannomatosis[J].J Clin Invest,2020,130(3):1479-1490. DOI:10.1172/JCI130206.
[46] Nogué C, Chong AS, Grau E, et al. DGCR8 and the six hit, three-step model of schwannomatosis[J]. Acta Neuropathol,2022,143(1):115-117. DOI:10.1007/s00401-021-02387-z.
|