[1] 赵一鸣,左秀然.PACS与人工智能辅助诊断的集成应用[J].中国数字医学,2018,13(4):20-22.DOI:10.3969/j.issn.1673-7571.2018.04.007.
[2] 刘再毅,石镇维.医学影像人工智能:进展和未来[J].国际医学放射学杂志,2023,46(1):1-4.DOI:10.19300/j.2023.S20494.
[3] Warnat-Herresthal S, Schultze H, Shastry KL, et al. Swarm Learning for decentralized and confidential clinical machine learning[J]. Nature, 2021, 594(7862):265-270. DOI: 10.1038/s41586-021-03583-3.
[4] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446. DOI: 10.1016/j.ejca.2011.11.036.
[5] Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features[J]. Radiology, 2021, 298(3):505-516. DOI: 10.1148/radiol.2021202553.
[6] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12):749-762. DOI: 10.1038/nrclinonc.2017.141.
[7] 广东省科学技术厅. 广东省科学技术厅关于印发«广东省新一代人工智能创新发展行动计划(2018~2020年)»的通知[EB]. (2018-10-18)[2023-10-25]. http://www.shenkexin.com/news/info-policy-2992.html.
[8] Kim M, Yun J, Cho Y, et al. Deep learning in medical imaging[J]. Neurospine, 2019, 16(4):657-668. DOI: 10.14245/ns.1938396.198.
[9] Ziller A, Usynin D, Braren R, et al. Medical imaging deep learning with differential privacy[J]. Sci Rep, 2021, 11(1):13524. DOI: 10.1038/s41598-021-93030-0.
[10] Liao S, Mo Z, Zeng M, et al. Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction[J]. Cell Rep Med, 2023, 4(7):101119. DOI: 10.1016/j.xcrm.2023.101119.
[11] Illimoottil M, Ginat D. Recent advances in deep learning and medical imaging for head and neck cancer treatment: MRI, CT, and PET scans[J]. Cancers (Basel), 2023, 15(13):3267. DOI: 10.3390/cancers15133267.
[12] Constant C, Aubin CE, Kremers HM, et al. The use of deep learning in medical imaging to improve spine care: A scoping review of current literature and clinical applications[J]. N Am Spine Soc J, 2023, 15:100236. DOI: 10.1016/j.xnsj.2023.100236.
[13] Koetzier LR, Mastrodicasa D, Szczykutowicz TP, et al. Deep learning image reconstruction for CT: technical principles and clinical prospects[J]. Radiology, 2023, 306(3):e221257. DOI: 10.1148/radiol.221257.
[14] Jiang B, Li N, Shi X, et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT[J]. Radiology, 2022, 303(1):202-212. DOI: 10.1148/radiol.210551.
[15] Nam JG, Park S, Park CM, et al. Histopathologic Basis for a Chest CT Deep Learning Survival Prediction Model in Patients with Lung Adenocarcinoma[J]. Radiology, 2022, 305(2):441-451. DOI: 10.1148/radiol.213262.
[16] Hung KF, Ai QYH, Wong LM, et al. Current applications of deep learning and radiomics on CT and CBCT for maxillofacial diseases[J]. Diagnostics (Basel), 2022, 13(1):110. DOI: 10.3390/diagnostics13010110.
[17] 隋祯慧,唐丽玮,张明珠,等.超声技术评估宫颈在预测早产中的新进展[J].国际医药卫生导报,2023,29(3):315-318.DOI:10.3760/cma.j.issn.1007-1245.2023.03.005.
[18] 医咖会.多模态人工智能与肿瘤精准诊疗[EB]. (2023-9-12)[2023-10-25]. https://www.163.com/dy/article/IEF7GU9N0514AGEL.html
[19] 吴玮,黄杰,黄宇华,等.应用计算机辅助诊断技术对口腔鳞状细胞癌组织病理图像进行自动检测的价值[J].现代肿瘤医学,2023,31(3):459-463.DOI:10.3969/j.issn.1672-4992. 2023.03.012.
[20] 梁智欣,邓戈龙,魏夏平,等.长尾分布下的PET-CT肺癌图像的深度学习网络检测与定位探索[J].中国医学物理学杂志,2022,39(12):1473-1484.DOI:10.3969/j.issn.1005- 202X.2022.12.004.
[21] 蔡振德,马捷,罗慧.基于深度学习技术对三阴性乳腺癌的多模态影像学研究[J].中国CT和MRI杂志,2023,21(2):85-87.DOI:10.3969/j.issn.1672-5131.2023.02.030.
[22] 梁演婷,林欢,李夙芸,等.CT特征联合人工智能定量参数评估ⅠA期肺腺癌高级别组织学亚型[J].中国医学影像技术,2023,39(2):199-203.DOI:10.13929/j.issn.1003-3289. 2023.02.011.
[23] 袁惊雷,谢晓桐,张佩娜,等.基于CT和MRI影像组学的机器学习模型预测肝癌早期复发的研究进展[J].磁共振成像,2022,13(12):154-158.DOI:10.12015/issn.1674-8034. 2022.12.029.
[24] 谷学攀,杨斌,赵凌峰,等.基于影像组学与机器学习对颈动脉体瘤术后并发症的预测[J/CD].中国血管外科杂志(电子版),2022,14(3):237-241.DOI:10.3969/j.issn.1674-7429. 2022.03.011.
[25] 陈帅,陈晓,陈井亚,等.基于CT影像组学对胰腺浆液及黏液性囊性肿瘤鉴别诊断[J].中国CT和MRI杂志,2022,20(10):92-95.DOI:10.3969/j.issn.1672-5131.2022.10.035.
[26] 广州市科学技术局. 广州市人工智能产业链高质量发展三年行动计划(2021—2023 年)(征求意见稿)[EB]. (2021-10-11)[2023-10-25]. https://www.gz.gov.cn/zwgk/ghjh/zxgh/content/post_7826240.html.
|