[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. DOI: 10.3322/caac.21492.
[2] Zhou Y, Rassy E, Coutte A, et al. Current standards in the management of early and locally advanced cervical cancer: update on the benefit of neoadjuvant/adjuvant strategies[J]. Cancers (Basel), 2022, 14(10):2449. DOI: 10.3390/cancers14102449.
[3] Seol HJ, Ulak R, Ki KD, et al. Cytotoxic and targeted systemic therapy in advanced and recurrent cervical cancer: experience from clinical trials[J]. Tohoku J Exp Med, 2014, 232(4):269-276. DOI: 10.1620/tjem.232.269.
[4] Ferrall L, Lin KY, Roden RBS, et al. Cervical cancer immunotherapy: facts and hopes[J]. Clin Cancer Res, 2021, 27(18):4953-4973. DOI: 10.1158/1078-0432.CCR-20-2833.
[5] Jalalvand M, Darbeheshti F, Rezaei N. Immune checkpoint inhibitors: review of the existing evidence and challenges in breast cancer[J]. Immunotherapy, 2021, 13(7):587-603. DOI: 10.2217/imt-2020-0283.
[6] Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer[J]. N Engl J Med, 2021, 385(20):1856-1867. DOI: 10.1056/NEJMoa2112435.
[7] Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382):1350-1355. DOI: 10.1126/science.aar4060.
[8] Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function[J]. J Cell Biol, 2021, 220(2):e202009045. DOI: 10.1083/jcb.202009045.
[9] 杨舒尧,王然,刘鹭,等.长链非编码RNA对肿瘤免疫的调控作用[J].中国科学:生命科学,2021,51(12):1611-1622.
[10] 陈媛媛.长链非编码RNA SCARNA2介导的DNA损伤修复在结直肠癌放疗敏感性中的作用及机制[D].上海:海军军医大学,2021.
[11] 刘明博,董青青,周博,等.长链非编码RNA PCED1B-AS1靶向miR-485-5p抑制宫颈癌细胞增殖、迁移和侵袭的实验研究[J].临床肿瘤学杂志,2022,27(5):385-392. DOI:10.3969/j.issn.1009-0460.2022.05.001.
[12] Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, et al. Human long noncoding RNA interactome: detection, characterization and function[J]. Int J Mol Sci, 2020, 21(3):1027. DOI: 10.3390/ijms21031027.
[13] Robinson EK, Covarrubias S, Carpenter S. The how and why of lncRNA function: an innate immune perspective[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(4):194419. DOI: 10.1016/j.bbagrm.2019.194419.
[14] Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation[J]. Science, 2014, 344(6181):310-313. DOI: 10.1126/science.1251456.
[15] Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project[J]. Nat Genet, 2013, 45(10):1113-1120. DOI: 10.1038/ng.2764.
[16] Liberzon A, Birger C, Thorvaldsdóttir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection[J]. Cell Syst, 2015, 1(6):417-425. DOI: 10.1016/j.cels.2015.12.004.
[17] Cunningham F, Allen JE, Allen J, et al. Ensembl 2022[J]. Nucleic Acids Res, 2022, 50(D1):D988-D995. DOI: 10.1093/nar/gkab1049.
[18] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140. DOI: 10.1093/bioinformatics/btp616.
[19] Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5):284-287. DOI: 10.1089/omi.2011.0118.
[20] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nat Genet, 2000, 25(1):25-29. DOI: 10.1038/75556.
[21] Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A, 2005, 102(43):15545-15550. DOI: 10.1073/pnas.0506580102.
[22] Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5):453-457. DOI: 10.1038/nmeth.3337.
[23] Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade[J]. Cell Rep, 2017, 18(1):248-262. DOI: 10.1016/j.celrep.2016.12.019.
[24] Fu J, Li K, Zhang W, et al. Large-scale public data reuse to model immunotherapy response and resistance[J]. Genome Med, 2020, 12(1):21. DOI: 10.1186/s13073-020- 0721-z.
[25] Liu J, Wang Y, Tian Z, et al. Multicenter phase II trial of Camrelizumab combined with Apatinib and Eribulin in heavily pretreated patients with advanced triple-negative breast cancer[J]. Nat Commun, 2022, 13(1):3011. DOI: 10.1038/s41467-022-30569-0.
[26] Gomez-Roca C, Cassier P, Zamarin D, et al. Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naïve or experienced for immune checkpoint blockade[J]. J Immunother Cancer, 2022, 10(5):e004076. DOI: 10.1136/jitc-2021-004076.
[27] Cho BC, Abreu DR, Hussein M, et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study[J]. Lancet Oncol, 2022, 23(6):781-792. DOI: 10.1016/S1470-2045(22)00226-1.
[28] Jung M, Kang M, Kim BS, et al. Nanovesicle-mediated targeted delivery of immune checkpoint blockades to potentiate therapeutic efficacy and prevent side effects[J]. Adv Mater, 2022, 34(9):e2106516. DOI: 10.1002/adma.202106516.
[29] Liu F, Dai Z, Cheng Q, et al. LncRNA-targeting bio-scaffold mediates triple immune effects for postoperative colorectal cancer immunotherapy[J]. Biomaterials, 2022, 284:121485. DOI: 10.1016/j.biomaterials.2022.121485.
[30] Ji J, Yin Y, Ju H, et al. Long non-coding RNA Lnc-Tim3 exacerbates CD8 T cell exhaustion via binding to Tim-3 and inducing nuclear translocation of Bat3 in HCC[J]. Cell Death Dis, 2018, 9(5):478. DOI: 10.1038/s41419-018- 0528-7.
[31] Zhang T, Hu H, Yan G, et al. Long non-coding RNA and breast cancer[J]. Technol Cancer Res Treat, 2019, 18:1533033819843889. DOI: 10.1177/1533033819843889.
[32] Lu T, Wang Y, Chen D, et al. Potential clinical application of lncRNAs in non-small cell lung cancer[J]. Onco Targets Ther, 2018, 11:8045-8052. DOI: 10.2147/OTT.S178431.
[33] O'Brien A, Zhou T, Tan C, et al. Role of non-coding RNAs in the progression of liver cancer: evidence from experimental models[J]. Cancers (Basel), 2019, 11(11):1652. DOI: 10.3390/cancers11111652.
[34] Zhao L, Liu Y, Zhang J, et al. LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint[J]. Cell Death Dis, 2019, 10(10):731. DOI: 10.1038/s41419-019-1886-5.
[35] Kathuria H, Millien G, McNally L, et al. NKX2-1-AS1 negatively regulates CD274/PD-L1, cell-cell interaction genes, and limits human lung carcinoma cell migration[J]. Sci Rep, 2018, 8(1):14418. DOI: 10.1038/s41598-018- 32793-5.
[36] Hasegawa T, Venkata Suresh V, Yahata Y, et al. Inhibition of the CXCL9-CXCR3 axis suppresses the progression of experimental apical periodontitis by blocking macrophage migration and activation[J]. Sci Rep, 2021, 11(1):2613. DOI: 10.1038/s41598-021-82167-7.
[37] Ma YF, Chen Y, Fang D, et al. The immune-related gene CD52 is a favorable biomarker for breast cancer prognosis[J]. Gland Surg, 2021, 10(2):780-798. DOI: 10.21037/gs-20-922.
[38] Liu P, Lin C, Liu Z, et al. Inhibition of ALG3 stimulates cancer cell immunogenic ferroptosis to potentiate immunotherapy[J]. Cell Mol Life Sci, 2022, 79(7):352. DOI: 10.1007/s00018-022-04365-4.
[39] Salmon H, Remark R, Gnjatic S, et al. Host tissue determinants of tumour immunity[J]. Nat Rev Cancer, 2019, 19(4):215-227. DOI: 10.1038/s41568-019-0125-9.
[40] Giraldo NA, Becht E, Vano Y, et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma[J]. Clin Cancer Res, 2017, 23(15):4416-4428. DOI: 10.1158/1078-0432.CCR-16-2848.
[41] Liu Y, Yan H, Gu H, et al. Myeloma-derived IL-32γ induced PD-L1 expression in macrophages facilitates immune escape via the PFKFB3-JAK1 axis[J]. Oncoimmunology, 2022, 11(1):2057837. DOI: 10.1080/2162402X.2022.2057837.
[42] Chen X, Xu R, He D, et al. CD8+ T effector and immune checkpoint signatures predict prognosis and responsiveness to immunotherapy in bladder cancer[J]. Oncogene, 2021, 40(43):6223-6234. DOI: 10.1038/s41388-021-02019-6.
[43] Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial[J]. Lancet, 2016, 387(10027):1540-1550. DOI: 10.1016/S0140-6736(15)01281-7.
|