[1] 周斌,辛灵,徐玲,等. 乳腺癌液体活检的现状与前景[J]. 中华外科杂志,2018,56(2):106-109. DOI:10.3760/cma.j.issn.0529-5815.2018.02.005.
[2] Sajid MI, Moazzam M, Kato S, et al. Overcoming barriers for siRNA therapeutics: from bench to bedside[J]. Pharmaceuticals (Basel), 2020, 13(10): 294. DOI: 10.3390/ph13100294.
[3] Rupaimoole R, Calin GA, Lopez-Berestein G, et al. miRNA deregulation in cancer cells and the tumor microenvironment[J]. Cancer Discov, 2016, 6(3): 235-246. DOI: 10.1158/2159-8290.CD-15-0893.
[4] Bartlett DW, Davis ME. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing[J]. Biotechnol Bioeng, 2007, 97(4): 909-921. DOI: 10.1002/bit.21285.
[5] Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems[J]. Adv Drug Deliv Rev, 2019, 144: 133-147. DOI: 10.1016/j.addr.2019. 05.004.
[6] Vicentini FT, Borgheti-Cardoso LN, Depieri LV, et al. Delivery systems and local administration routes for therapeutic siRNA[J]. Pharm Res, 2013, 30(4): 915-931. DOI: 10.1007/s11095-013-0971-1.
[7] Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery[J]. Nat Rev Drug Discov, 2009, 8(2): 129-138. DOI: 10.1038/nrd2742.
[8] Kanasty R, Dorkin JR, Vegas A, et al. Delivery materials for siRNA therapeutics[J]. Nat Mater, 2013, 12(11): 967-977. DOI: 10.1038/nmat3765.
[9] 张琼丹,陈朝霞,李芾瑶,等. siRNA纳米递送系统研究进展[J/OL]. 生物化学与生物物理进展:1-24[2022-06-13]. http://kns.cnki.net/kcms/detail/11.2161.Q.20210831.1650. 002.html.
[10] O'Neill CP, Dwyer RM. Nanoparticle-based delivery of tumor suppressor microRNA for cancer therapy[J]. Cells, 2020, 9(2):521. DOI: 10.3390/cells9020521.
[11] Schroeder A, Levins CG, Cortez C, et al. Lipid-based nanotherapeutics for siRNA delivery[J]. J Intern Med, 2010, 267(1): 9-21. DOI: 10.1111/j.1365-2796.2009. 02189.x.
[12] 刘颖,赵俐. siRNA用于癌症治疗的递送载体设计策略[J]. 医药导报,2018,37(5):581-586. DOI:10.3870/j.issn.1004-0781.2018.05.017.
[13] Bouxsein NF, McAllister CS, Ewert KK, et al. Structure and gene silencing activities of monovalent and pentavalent cationic lipid vectors complexed with siRNA[J]. Biochemistry, 2007, 46(16): 4785-4792. DOI: 10.1021/bi062138l.
[14] Devroe E, Silver PA. Retrovirus-delivered siRNA[J]. BMC Biotechnol, 2002, 2: 15. DOI: 10.1186/1472-6750-2-15.
[15] Shen C, Reske SN. Adenovirus-delivered siRNA[J]. Methods Mol Biol, 2004, 252: 523-532. DOI: 10.1385/1-59259-746-7:523.
[16] Shen C, Buck AK, Liu X, et al. Gene silencing by adenovirus-delivered siRNA[J]. FEBS Lett, 2003, 539(1-3): 111-114. DOI: 10.1016/s0014-5793(03)00209-6.
[17] Song H, Hart SL, Du Z. Assembly strategy of liposome and polymer systems for siRNA delivery[J]. Int J Pharm, 2021, 592:120033. DOI: 10.1016/j.ijpharm.2020.120033.
[18] Zabel MD, Mollnow L, Bender H. Lipopeptide delivery of siRNA to the central nervous system[J]. Methods Mol Biol, 2019, 1943: 389-403. DOI: 10.1007/978-1-4939-9092- 4_26.
[19] Liu HM, Zhang YF, Xie YD, et al. Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy[J]. Int J Nanomedicine, 2017, 12: 1065-1083. DOI: 10.2147/IJN.S125286.
[20] Li J, Liang H, Liu J, et al. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy[J]. Int J Pharm, 2018, 546(1-2): 215-225. DOI: 10.1016/j.ijpharm.2018.05.045.
[21] Endres T, Zheng M, Beck-Broichsitter M, et al. Lyophilised ready-to-use formulations of PEG-PCL-PEI nano-carriers for siRNA delivery[J]. Int J Pharm, 2012, 428(1-2): 121-124. DOI: 10.1016/j.ijpharm.2012.03.003.
[22] Chen C, Wang Z, Zhang J, et al. Dextran-conjugated caged siRNA nanoparticles for photochemical regulation of RNAi-induced gene silencing in cells and mice[J]. Bioconjug Chem, 2019, 30(5): 1459-1465. DOI: 10.1021/acs.bioconjchem.9b00204.
[23] Grayson AC, Doody AM, Putnam D. Biophysical and structural characterization of polyethylenimine mediated siRNA delivery in vitro[J]. Pharm Res, 2006, 23(8): 1868-1876. DOI: 10.1007/s11095-006-9009-2.
[24] 伍佩均,张世倡,吴丽彩,等. 聚合物微针经皮传递蛋白类药物的研究[J]. 国际医药卫生导报,2019,25(14):2268-2271. DOI:10.3760/cma.j.issn.1007-1245.2019.14.019.
[25] Reineke TM, Davis ME. Nucleic acid delivery via polymer vehicles[J]. Polym Sci A Compr Refer, 2012, 9: 497-527. DOI: 10.1016/B978-0-444-53349-4.00239-9.
[26] Huh MS, Lee SY, Park S, et al. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice[J]. J Control Release, 2010, 144(2): 134-143. DOI: 10.1016/j.jconrel.2010.02.023.
[27] Zhang BF, Xing L, Cui PF, et al. Mitochondria apoptosis pathway synergistically activated by hierarchical targeted nanoparticles co-delivering siRNA and lonidamine[J]. Biomaterials, 2015, 61: 178-189. DOI: 10.1016/j.biomaterials.2015.05.027.
[28] Ganesh S, Iyer AK, Morrissey DV, et al. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors[J]. Biomaterials, 2013, 34(13): 3489-3502. DOI: 10.1016/j.biomaterials.2013.01.077.
[29] Wang D, Wang T, Xu Z, et al. Cooperative treatment of metastatic breast cancer using host-guest nanoplatform coloaded with docetaxel and siRNA[J]. Small, 2016, 12(4):488-498. DOI: 10.1002/smll.201502913.
[30] Qi R., Liu S, Chen J, et al. Biodegradable copolymers with identical cationic segments and their performance in siRNA delivery[J]. J Control Release, 2012, 159(2): 251-260. DOI: 10.1016/j.jconrel.2012.01.015.
[31] Yang X, Fan B, Gao W, et al. Enhanced endosomal escape by photothermal activation for improved small interfering RNA delivery and antitumor effect[J]. Int J Nanomed, 2018, 13: 4333-4344. DOI: 10.2147/IJN.S161908.
[32] Sun W, Chen X, Xie C, et al. Co-Delivery of doxorubicin and Anti-BCL-2 siRNA by pH-responsive polymeric vector to overcome drug resistance in in vitro and in vivo HepG2 hepatoma model[J]. Biomacromolecules, 2018, 19(6): 2248-2256. DOI: 10.1021/acs.biomac.8b00272.
[33] Patil Y, Panyam J. Polymeric nanoparticles for siRNA delivery and gene silencing[J]. Int J Pharm, 2009, 367(1-2): 195-203. DOI: 10.1016/j.ijpharm.2008.09.039.
|