[1] Li Y, Zhao L, Li XF. Hypoxia and the tumor microenvironment[J].Technol Cancer Res Treat,2021,20:15330338211036304. DOI:10.1177/15330338211036304.
[2] Xu M , Wang P , Sun S , et al. Smart strategies to overcome tumor hypoxia toward the enhancement of cancer therapy[J].Nanoscale,2020,12(42):21519-21533. DOI:10.1039/d0nr05501h.
[3] 刘连生. 化学修饰血红蛋白的研究概况及进展[J]. 中国新技术新产品,2009,17(11):10-11. DOI:10.3969/j.issn.1673- 9957.2009.11.010.
[4] Cao M, Zhao Y, He H, et al. New applications of HBOC-201: a 25-year review of the literature[J].Front Med (Lausanne),2021,8:794561. DOI:10.3389/fmed.2021. 794561.
[5] Natanson C, Kern SJ, Lurie P, et al. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis[J].JAMA,2008,299(19):2304-2312. DOI:10.1001/jama.299.19.jrv80007.
[6] Mackenzie CF, Moon-Massat PF, Shander A, et al. When blood is not an option: factors affecting survival after the use of a hemoglobin-based oxygen carrier in 54 patients with life-threatening anemia[J].Anesth Analg,2010,110(3):685-693. DOI:10.1213/ANE.0b013e3181cd473b.
[7] Jahr JS, Moallempour M, Lim JC. HBOC-201, hemoglobin glutamer-250 (bovine), Hemopure (Biopure Corporation)[J].Expert Opin Biol Ther,2008,8(9):1425-1433. DOI:10.1517/14712598.8.9.1425.
[8] Jahr JS, Guinn NR, Lowery DR, et al. Blood substitutes and oxygen therapeutics: a review[J].Anesth Analg,2021,132(1):119-129. DOI:10.1213/ANE.0000000000003957.
[9] Mer M, Hodgson E, Wallis L, et al. Hemoglobin glutamer-250 (bovine) in South Africa: consensus usage guidelines from clinician experts who have treated patients[J].Transfusion,2016,56(10):2631-2636. DOI:10.1111/trf.13726.
[10] Muller CR, Williams AT, Munoz CJ, et al. Safety profile of high molecular weight polymerized hemoglobins[J].Transfusion,2021,61(1):212-224. DOI:10.1111/trf.16157.
[11] Okamoto W, Hasegawa M, Usui T, et al. Hemoglobin-albumin clusters as an artificial O2 carrier: physicochemical properties and resuscitation from hemorrhagic shock in rats[J].J Biomed Mater Res B Appl Biomater,2022,110(8):1827-1838. DOI:10.1002/jbm.b.35040.
[12] Devineau S, Kiger L, Galacteros F, et al. Manipulating hemoglobin oxygenation using silica nanoparticles: a novel prospect for artificial oxygen carriers[J].Blood Adv,2018,2(2):90-94. DOI:10.1182/bloodadvances. 2017012153.
[13] Wang Q, Zhang R, You G, et al. Influence of polydopamine-mediated surface modification on oxygen-release capacity of haemoglobin-based oxygen carriers[J].Artif Cells Nanomed Biotechnol,2018,46(sup2):484-492. DOI:10.1080/21691401.2018.1459636.
[14] Qi D, Li Q, Wang P, et al. Haemoglobin site-specifically modified with ferulic acid to suppress the autoxidation[J].Artif Cells Nanomed Biotechnol,2017,45(6):1-5. DOI:10.1080/21691401.2017.1309659.
[15] Funaki R, Okamoto W, Endo C, et al. Genetically engineered haemoglobin wrapped covalently with human serum albumins as an artificial O2 carrier[J].J Mater Chem B,2020,8(6):1139-1145. DOI:10.1039/c9tb02184a.
[16] Morita Y, Takada R, Saito A, et al. Genetically and chemically tuned haemoglobin-albumin trimers with superior O2 transport efficiency[J].Chem Commun (Camb),2021,57(72):9144-9147. DOI:10.1039/d1cc03684j.
[17] Takase B, Higashimura Y, Asahina H, et al. Liposome-encapsulated hemoglobin (HbV) transfusion rescues rats undergoing progressive lethal 85% hemorrhage as a result of an anti-arrhythmogenic effect on the myocardium[J].Artif Organs,2021,45(11):1391-1404. DOI:10.1111/aor.14033.
[18] 娜飞沙•斯马义,陈莉智,王相朦,等. 生物携氧治疗剂的研究:作用与应用[J]. 中国组织工程研究,2020,24(21):3416-3422. DOI:10.3969/j.issn.2095-4344.2575.
[19] Le Meur Y, Badet L, Essig M, et al. First-in-human use of a marine oxygen carrier (M101) for organ preservation: a safety and proof-of-principle study[J].Am J Transplant,2020,20(6):1729-1738. DOI:10.1111/ajt.15798.
[20] Asong-Fontem N, Panisello-Rosello A, Lopez A, et al. A novel oxygen carrier (M101) attenuates ischemia-reperfusion injuries during static cold storage in steatotic livers[J].Int J Mol Sci,2021,22(16):8542. DOI:10.3390/ijms22168542.
[21] Zimmerman D, DiIusto M, Dienes J, et al. Direct comparison of oligochaete erythrocruorins as potential blood substitutes[J].Bioeng Transl Med,2017,2(2):212-221. DOI:10.1002/btm2.10067.
[22] Shannon AM, Bouchier-Hayes DJ, Condron CM, et al. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies[J].Cancer Treat Rev,2003,29(4):297-307. DOI:10.1016/s0305-7372(03)00003-3.
[23] Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, et al. Modulating tumor hypoxia by nanomedicine for effective cancer therapy[J].J Cell Physiol,2018,233(3):2019-2031. DOI:10.1002/jcp.25859.
[24] Wu W, Yang Q, Li T, et al. Hemoglobin-based oxygen carriers combined with anticancer drugs may enhance sensitivity of radiotherapy and chemotherapy to solid tumors[J].Artif Cells Blood Substit Immobil Biotechnol,2009,37(4):163-165. DOI:10.1080/10731190903043218.
[25] Qi X, Wong BL, Lau SH, et al. A hemoglobin-based oxygen carrier sensitized Cisplatin based chemotherapy in hepatocellular carcinoma[J].Oncotarget,2017,8(49):85311-85325. DOI:10.18632/oncotarget.19672.
[26] Lee NP, Chan KT, Choi MY, et al. Oxygen carrier YQ23 can enhance the chemotherapeutic drug responses of chemoresistant esophageal tumor xenografts[J].Cancer Chemother Pharmacol,2015,76(6):1199-1207. DOI:10.1007/s00280-015-2897-2.
[27] Jiang MS, Yin XY, Qin B, et al. Inhibiting hypoxia and chemotherapy-induced cancer cell metastasis under a valid therapeutic effect by an assistance of biomimetic oxygen delivery[J].Mol Pharm,2019,16(11):4530-4541. DOI:10.1021/acs.molpharmaceut.9b00663.
[28] 董德操,高燚秋,王红,等. 聚合人脐带血血红蛋白氧载体增强仑伐替尼对肝癌移植瘤裸鼠疗效的初步实验[J]. 中国输血杂志,2021,34(5):456-460. DOI:10.13303/j.cjbt.issn.1004-549x.2021.05.005.
[29] Rockwell S, Dobrucki IT, Kim EY, et al. Hypoxia and radiation therapy: past history, ongoing research, and future promise[J].Curr Mol Med,2009,9(4):442-458. DOI:10.2174/156652409788167087.
[30] Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment[J].Int J Nanomedicine,2018,13:6049-6058. DOI:10.2147/IJN.S140462.
[31] Gao R, Gu Y, Yang Y, et al. Robust radiosensitization of hemoglobin-curcumin nanoparticles suppresses hypoxic hepatocellular carcinoma[J].J Nanobiotechnology,2022,20(1):115. DOI:10.1186/s12951-022-01316-w.
[32] Zhang X, Xi Z, Machuki JO, et al. Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging[J].ACS Nano,2019,13(5):5306-5325. DOI:10.1021/acsnano.8b09786.
[33] Xia D, Hang D, Li Y, et al. Au-hemoglobin loaded platelet alleviating tumor hypoxia and enhancing the radiotherapy effect with low-dose X-ray[J].ACS Nano,2020,14(11):15654-15668. DOI:10.1021/acsnano.0c06541.
[34] Yan Y, Zhang L, Zuo Y, et al. Immune checkpoint blockade in cancer immunotherapy: mechanisms, clinical outcomes, and safety profiles of PD-1/PD-L1 inhibitors[J].Arch Immunol Ther Exp (Warsz),2020,68(6):36. DOI:10.1007/s00005-020-00601-6.
[35] Jiang M, Qin B, Luo L, et al. A clinically acceptable strategy for sensitizing anti-PD-1 treatment by hypoxia relief[J].J Control Release,2021,335:408-419. DOI:10.1016/j.jconrel.2021.06.001.
[36] Chow E, Lau JSH, Wai T, et al. The anti-tumoral effects of the oxygen carrier YQ23 in a triple-negative breast cancer syngeneic model[J].Transl Cancer Res,2021,10(2):656-668. DOI:10.21037/tcr-20-2768.
[37] Dang J, He H, Chen D, et al. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT)[J].Biomater Sci,2017,5(8):1500-1511. DOI:10.1039/c7bm00392g.
[38] Liu WL, Liu T, Zou MZ, et al. Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy[J].Adv Mater,2018,30(35):e1802006. DOI:10.1002/adma.201802006.
[39] Wang J, Zhang B, Sun J, et al. Nanomedicine-enabled modulation of tumor hypoxic microenvironment for enhanced cancer therapy[J].Adv Ther (Weinh),2020,3(1):1900083. DOI:10.1002/adtp.201900083.
[40] Guo X, Qu J, Zhu C, et al. Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy[J].Drug Deliv,2018,25(1):585-599. DOI:10.1080/10717544.2018.1435751.
[41] Nowak KM, Schwartz MR, Breza VR, et al. Sonodynamic therapy: rapid progress and new opportunities for non-invasive tumor cell killing with sound[J].Cancer Lett,2022,532:215592. DOI:10.1016/j.canlet.2022.215592.s
[42] Yin T, Yin J, Ran H, et al. Hypoxia-alleviated sonodynamic therapy based on a hybrid protein oxygen carrier to enhance tumor inhibition[J].Biomater Sci,2021,10(1):294-305. DOI:10.1039/d1bm01710a.
[43] Yuan M, Liang S, Zhou Y, et al. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy[J].Nano Lett,2021,21(14):6042-6050. DOI:10.1021/acs.nanolett.1c01220.
[44] Xu T, Ma Y, Yuan Q, et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy[J].ACS Nano,2020,14(3):3414-3425. DOI:10.1021/acsnano.9b09426.
[45] Sang W, Xie L, Wang G, et al. Oxygen-enriched metal-phenolic X-ray nanoprocessor for cancer radio-radiodynamic therapy in combination with checkpoint blockade immunotherapy[J].Adv Sci (Weinh),2020,8(4):2003338. DOI:10.1002/advs.202003338.
|