[1] 马媛媛,杨国源. 缺血性卒中基础与临床研究进展[J]. 中国现代神经疾病杂志,2018,18(1):7-18. DOI:10.3969/j.issn.1672-6731.2018.01.002.
[2] Campbell BCV, De Silva DA, Macleod MR, et al. Ischaemic stroke [J]. Nat Rev Dis Primers, 2019, 5(1): 70. DOI: 10.1038/s41572-019-0118-8.
[3] Zhou Z, Lu J, Liu WW, et al. Advances in stroke pharmacology [J]. Pharmacol Ther, 2018, 191: 23-42. DOI: 10.1016/j.pharmthera.2018.05.012.
[4] Lekoubou A, Fox J, Ssentongo P. Incidence and association of reperfusion therapies with poststroke seizures: a systematic review and meta-analysis [J]. Stroke, 2020, 51(9):2715-2723. DOI: 10.1161/STROKEAHA. 119. 028899.
[5] Cahill LS, Carey LM, Lannin NA, et al. Implementation interventions to promote the uptake of evidence-based practices in stroke rehabilitation [J]. Cochrane Database Syst Rev, 2020, 10(10): CD012575. DOI: 10.1002/14651858.CD012575.pub2.
[6] Hauer AJ, Kleinloog R, Giuliani F, et al. RNA-sequencing highlights inflammation and impaired integrity of the vascular wall in brain arteriovenous malformations [J]. Stroke, 2020, 51(1):268-274. DOI: 10.1161/STROKEAHA. 119.025657.
[7] Abe A, Tanaka M, Yasuoka A, et al. Changes in whole-blood microRNA profiles during the onset and treatment process of cerebral infarction: a human study [J]. Int J Mol Sci, 2020, 21(9): 3107. DOI: 10.3390/ijms21093107.
[8] 仲倩维,马爱军,潘旭东,等. 缺血性卒中不同亚型患者血浆miRNAs表达谱变化分析[J]. 中华神经科杂志,2015,48(2):114-119. DOI:10.3760/cma.j.issn.1006-7876. 2015. 02.009.
[9] Zhao X, Bai F, Zhang E, et al. Electroacupuncture improves neurobehavioral function through targeting of SOX2-mediated axonal regeneration by microRNA-132 after ischemic stroke [J]. Front Mol Neurosci, 2018, 11: 471. DOI: 10.3389/fnmol.2018.00471.
[10] Yang L, Wu H, Yang F, et al. Identification of candidate genes and pathways in dexmedetomidine-induced neuroprotection in rats using RNA sequencing and bioinformatics analysis [J]. Ann Palliat Med, 2021, 10(1): 372-384. DOI: 10.21037/apm-20-2346.
[11] Ghasemloo E, Oryan S, Bigdeli MR, et al. The neuroprotective effect of microRNA-149-5p and coenzymeQ10 by reducing levels of inflammatory cytokines and metalloproteinases following focal brain ischemia in rats [J]. Brain Res Bull, 2021, 169:205-213. DOI: 10.1016/j.brainresbull.2021.01.013.
[12] Tamanini A, Fabbri E, Jakova T, et al. A peptide-nucleic acid targeting miR-335-5p enhances expression of cystic fibrosis transmembrane conductance regulator (CFTR) gene with the possible involvement of the CFTR scaffolding protein NHERF1 [J]. Biomedicines, 2021, 9(2):117. DOI: 10.3390/biomedicines9020117.
[13] Wei Z, Liu J, Xie H, et al. MiR-122-5p mitigates inflammation, reactive oxygen species and SH-SY5Y apoptosis by targeting CPEB1 after spinal cord injury via the PI3K/AKT signaling pathway [J]. Neurochem Res, 2021, 46(4): 992-1005. DOI: 10.1007/s11064-021- 03232-1.
|