[1] Alamoudi AA, Alnoury A, Gad H. miRNA in tumour metabolism and why could it be the preferred pathway for energy reprograming [J]. Brief Funct Genomics, 2018, 17(3):157-169. DOI: 10.1093/bfgp/elx023.
[2] Duffy CP, McCoy CE. The role of microRNAs in repair processes in multiple sclerosis [J]. Cells, 2020, 9(7):1711. DOI: 10.3390/cells9071711.
[3] Liu X, Chen L, Tian XD, et al. MiR-137 and its target TGFA modulate cell growth and tumorigenesis of non-small cell lung cancer [J]. Eur Rev Med Pharmacol Sci, 2017, 21(3): 511-517.
[4] Chu PC, Lin PC, Wu HY, et al. Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway [J]. Oncogene, 2018, 37(25): 3440-3455. DOI: 10.1038/s41388-018-0222-3.
[5] Liu C, Wu H, Li Y, et al. SALL4 suppresses PTEN expression to promote glioma cell proliferation via PI3K/AKT signaling pathway [J]. J Neurooncol, 2017, 135(2):263-272. DOI: 10.1007/s11060-017-2589-3.
[6] Wu M, Wang J, Tang W, et al. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in colorectal cancer [J]. Oncogenesis, 2016, 5(11):e271. DOI: 10.1038/oncsis.2016.68.
[7] Wu SH, Bi JF, Cloughesy T, et al. Emerging function of mTORC2 as a core regulator in glioblastoma: metabolic reprogramming and drug resistance [J]. Cancer Biol Med, 2014, 11(4):255-263. DOI: 10.7497/j.issn.2095-3941. 2014.04.004.
[8] Neil J, Shannon C, Mohan A, et al. ATP-site binding inhibitor effectively targets mTORC1 and mTORC2 complexes in glioblastoma [J]. Int J Oncol, 2016, 48(3):1045-1052. DOI: 10.3892/ijo.2015.3311.
[9] Li X, Wu C, Chen N, et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma [J]. Oncotarget, 2016, 7(22): 33440 -33450. DOI: 10.18632/oncotarget.7961.
[10] Wang L, Liu J, Zhong Z, et al. PTP4A3 is a target for inhibition of cell proliferatin, migration and invasion through Akt/mTOR signaling pathway in glioblastoma under the regulation of miR-137[J]. Brain Res, 2016,1646: 441-450. DOI:10.1016/j.brainres.2016.06.026.
[11] Zhu H. Forkhead box transcription factors in embryonic heart development and congenital heart disease [J]. Life Sci, 2016, 144: 194-201. DOI: 10.1016/j.lfs.2015.12.001.
[12] Wu M, Wang J, Tang W, et al. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in colorectal cancer [J]. Oncogenesis, 2016, 5(11): e271. DOI: 10.1038/oncsis.2016.68.
[13] Wu M, Wang J, Tang W, et al. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in colorectal cancer [J]. Oncogenesis, 2016,5(11):e271. DOI: 10.1038/oncsis.2016.68.
[14] Gao L, Chen B, Li J, et al. Wnt/β-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms [J]. PLoS One, 2017,12(8):e0181346. DOI: 10.1371/journal.pone.0181346.
[15] Ji ZG, Jiang HT, Zhang PS. FOXK1 promotes cell growth through activating wnt/β-catenin pathway and emerges as a novel target of miR-137 in glioma [J]. Am J Transl Res, 2018, 10(6):1784-1792.
[16] 谢渊,李抄,张晓怡,等. 胃泌素对胃癌细胞EMT和Wnt/β-catenin信号通路相关基因表达的影响[J]. 中国老年学杂志,2021,41(2):338-342. DOI:10.3969/j.issn.1005-9202. 2021.02.033.
[17] Wang W, Li X, Lee M, et al. FOXKs promote Wnt/β-catenin signaling by translocating DVL into the nucleus [J]. Dev Cell, 2015, 32(6):707-718. DOI: 10.1016/j.devcel.2015. 01.031.
[18] Gu X, Yao L, Ma G, et al. TCTP promotes glioma cell proliferation in vitro and in vivo via enhanced β-catenin/TCF-4 transcription [J]. Neuro Oncol, 2014, 16(2):217-227. DOI: 10.1093/neuonc/not194.
[19] Cao Y, Li X, Kong S, et al. CDK4/6 inhibition suppresses tumour growth and enhances the effect of temozolomide in glioma cells[J]. J Cell Mol Med, 2020, 24(9):5135-5145. DOI: 10.1111/jcmm.15156.
[20] Moradimotlagh A, Arefian E, Rezazadeh VR, et al. MicroRNA-129 Inhibits Glioma Cell Growth by Targeting CDK4, CDK6, and MDM2[J]. Mol Ther Nucleic Acids, 2020, 19: 759-764.DOI: 10.1016/j.omtn.2019.11.033
[21] Bhaskaran V, Nowicki MO, Idriss M, et al. The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma [J]. Nat Commun, 2019, 10(1):442. DOI: 10.1038/s41467-019-08390-z.
[22] Fortin ES, Mathews IT, Symons MH, et al. Implications of Rho GTPase signaling in glioma cell invasion and tumor progression[J]. Front Oncol, 2013, 3: 241. DOI: 10.3389/fonc.2013.00241.
[23] Kopfer KH, Jager W, Matthaus F. A mechanochemical model for rho GTPase mediated cell polarization [J]. J Theor Biol, 2020, 504: 110386. DOI: 10.1016/j.jtbi.2020.110386.
[24] Liang Z, Li J, Zhao L, et al. miR-375 affects the hedgehog signaling pathway by downregulating RAC1 to inhibit hepatic stellate cell viability and epithelial-mesenchymal transition [J]. Mol Med Rep, 2021, 23(3):182. DOI: 10.3892/mmr.2020.11821.
[25] Liu Y, Lu Y, Li A, et al. mTORC2/Rac1 pathway predisposes cancer aggressiveness in IDH1-mutated glioma [J]. Cancers (Basel), 2020, 12(4):787. DOI: 10.3390/cancers12040787.
[26] Qin W, Rong X, Dong J, et al. miR-142 inhibits the migration and invasion of glioma by targeting Rac1[J]. Oncol Rep, 2017, 38(3): 1543-1550. DOI: 10.3892/or.2017.5816.
[27] Rivero S, Rodríguez-Real G, Marín I, et al. MRGBP, a member of the NuA4 complex, inhibits DNA double-strand break repair [J]. FEBS Open Bio, 2021, 11(3):622-632. DOI: 10.1002/2211-5463.13071.
[28] Huang J, Chen X, Zhu W. MRGBP is a potential novel prognostic biomarker and is correlated with immune infiltrates in hepatocellular carcinoma [J]. Medicine (Baltimore), 2021, 100(12):e25234. DOI: 10.1097/MD.0000000000025234.
[29] Ding F, Zhang S, Gao S, et al. MRGBP as a potential biomarker for the malignancy of pancreatic ductal adenocarcinoma [J]. Oncotarget, 2017, 8(38): 64224- 64236. DOI: 10.18632/oncotarget.19451.
[30] Chai D, Zhang L, Guan Y, et al. Prognostic value and immunological role of MORF4-related gene-binding protein in human cancers [J]. Front Cell Dev Biol, 2021, 9:703415. DOI: 10.3389/fcell.2021.703415.
[31] Ding F, Zhang S, Gao S, et al. MiR-137 functions as a tumor suppressor in pancreatic cancer by targeting MRGBP [J]. J Cell Biochem, 2018, 119(6): 4799-4807. DOI: 10.1002/jcb.26676.
[32] Shi X, Wang R. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway [J]. BMC Syst Biol, 2017, 11 Suppl 4:84. DOI: 10.1186/s12918-017-0457-6.
[33] Liu PJ, Pan YH, Wang DW, et al. Long non-coding RNA XIST promotes cell proliferation of pancreatic cancer through miR-137 and Notch1 pathway [J]. Eur Rev Med Pharmacol Sci, 2020,24(23):12161-12170. DOI: 10.26355/eurrev_202012_24005.
|