[1] Chen QF, Jiang XY, Hu Y, et al. Additional hepatic arterial infusion chemotherapy to sorafenib was cost-effective for hepatocellular carcinoma with major portal vein tumor thrombosis[J]. J Hepatocell Carcinoma, 2024, 11:1473-1479. DOI:10.2147/JHC.S470470.
[2] Qiu X, Shen S, Lu D, et al. Predictive efficacy of the advanced lung cancer inflammation index in hepatocellular carcinoma after hepatectomy[J]. J Inflamm Res, 2024, 17:5197-5210. DOI:10.2147/JIR.S468215.
[3] Peng S, Chen Q, Wu Y. ICIs in hepatocellular carcinoma: a comprehensive analysis of path forward for multimodal treatment strategies[J]. Hepatol Commun, 2024, 8(8):e0509. DOI:10.1097/HC9.0000000000000509.
[4] Yang A, Liu J, Li M, et al. Integrating bioinformatics and machine learning methods to analyze diagnostic biomarkers for HBV-induced hepatocellular carcinoma[J]. Diagn Pathol, 2024, 19(1):105. DOI:10.1186/s13000-024-01528-8.
[5] Lampimukhi M, Qassim T, Venu R, et al. A review of incidence and related risk factors in the development of hepatocellular carcinoma[J]. Cureus, 2023, 15(11):e49429. DOI:10.7759/cureus.49429.
[6] Hamdy H, Yang Y, Cheng C, et al. Identification of potential hub genes related to aflatoxin B1, liver fibrosis and hepatocellular carcinoma via integrated bioinformatics analysis[J]. Biology (Basel), 2023, 12(2):205. DOI:10.3390/biology12020205.
[7] Wang X, Chai X, Zhang J, et al. Nomograms established for predicting microvascular invasion and early recurrence in patients with small hepatocellular carcinoma[J]. BMC Cancer, 2024, 24(1):929. DOI:10.1186/s12885-024-12655-2.
[8] Cai Y, Li H, Xie D, et al. AKR1B10 accelerates glycolysis through binding HK2 to promote the malignant progression of oral squamous cell carcinoma[J]. Discov Oncol, 2024, 15(1):132. DOI:10.1007/s12672-024-00996-0.
[9] Geng N, Jin Y, Li Y, et al. AKR1B10 inhibitor epalrestat facilitates sorafenib-induced apoptosis and autophagy via targeting the mTOR pathway in hepatocellular carcinoma[J]. Int J Med Sci, 2020, 17(9):1246-1256. DOI:10.7150/ijms.42956.
[10] Ma LN, Ma Y, Luo X, et al. AKR1B10 expression characteristics in hepatocellular carcinoma and its correlation with clinicopathological features and immune microenvironment[J]. Sci Rep, 2024, 14(1): 12149. DOI: 10.1038/s41598-024-62323-5.
[11] Sun L, Chen W, Zhao P, et al. Anticancer effects of wild baicalin on hepatocellular carcinoma: downregulation of AKR1B10 and PI3K/AKT signaling pathways[J]. Cancer Manag Res, 2024, 16: 477-489. DOI: 10.2147/CMAR.S458274.
[12] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 协和医学杂志,2024,15(3):532-558. DOI: 10.12290/xhyxzz.2024-0304.
[13] Xie C, Ye X, Zeng L, et al. Serum AKR1B10 as an indicator of unfavorable survival of hepatocellular carcinoma[J]. J Gastroenterol, 2023, 58(10):1030-1042. DOI:10.1007/s00535-023-02011-9.
[14] Chen Y, Wang X. MI-RDB: an online database for prediction of functional microRNA targets[J]. Nucleic Acids Res, 2020, 48(D1): D127-D131. DOI: 10.1093/nar/gkz757.
[15] Karagkouni D, Paraskevopoulou MD, Tastsoglou S, et al. DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts[J]. Nucleic Acids Res, 2020, 48(D1):D101-D110. DOI:10.1093/nar/gkz1036.
[16] Zhang T, Guan G, Zhang J, et al. E2F1-mediated AUF1 upregulation promotes HCC development and enhances drug resistance via stabilization of AKR1B10[J]. Cancer Sci, 2022, 113(4):1154-1167. DOI:10.1111/cas.15272.
[17] Tian K, Deng Y, Li Z, et al. AKR1B10 inhibits the proliferation and metastasis of hepatocellular carcinoma cells by regulating the PI3K/AKT pathway[J]. Oncol Lett, 2023, 27(1):18. DOI:10.3892/ol.2023.14151.
[18] Wu T, Ke Y, Tang H, et al. Fidarestat induces glycolysis of NK cells through decreasing AKR1B10 expression to inhibit hepatocellular carcinoma[J]. Mol Ther Oncolytics, 2021, 23: 420-431. DOI:10.1016/j.omto.2021.06.0.
|