国际医药卫生导报 ›› 2023, Vol. 29 ›› Issue (7): 903-909.DOI: 10.3760/cma.j.issn.1007-1245.2023.07.004
MicroRNAs在结直肠炎癌转化过程中的作用
耿松 卢清军 任翔 蒋宏
滨州医学院附属医院结直肠疝外科,滨州 256000
收稿日期:2022-11-30
出版日期:2023-04-01
发布日期:2023-04-28
通讯作者:
蒋宏,Email:byfyjzcjh@126.com
基金资助:国家卫生健康委科技发展中心“微创手术临床应用规范化研究”课题(WA2021RW12);滨州医学院“临床+X”项目(BY2021LCX21);滨州医学院科研计划与科研启动基金项目(BY2019KYQD42、BY2019KJ11)
Role of microRNAs in colorectal inflammatory cancer transformation
Geng Song, Lu Qingjun, Ren Xiang, Jiang Hong
Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou 256000, China
Received:2022-11-30
Online:2023-04-01
Published:2023-04-28
Contact:
Jiang Hong, Email: byfyjzcjh@126.com
Supported by:Project of "Research on Clinical Application Norms of Minimally Invasive Surgery" of the Science and Technology Development Center of the National Health Commission (WA2021RW12); Binzhou Medical University "Clinical+X" Project (BY2021LCX21); Scientific Research Plan and Research Initiation Fund Project of Binzhou Medical University (BY2019KYQD42, BY2019KJ11)
摘要:
结直肠癌是全世界第三大常见癌症,炎症性肠病是导致结直肠癌发生的关键因素之一。MicroRNAs是一类小的非编码RNA,在维持肠道稳态和调节各种病理生理状况方面起着至关重要的作用。然而,microRNAs在结直肠炎癌转化过程中的作用尚不清楚。本综述的目的是总结结直肠癌中低表达的(miR-126、miR-320、miR-148/152、miR-146a、miR-370-3p、miR-449a、miR-200b、miR-193a-3p、miR-139-5p和miR-124)和高表达的(miR-21、miR-155、miR-31、miR-19a、miR18a、miR-301a和miR-214)microRNAs,以及它们在结肠炎恶性转化中的作用,这些microRNAs的不同表达可用于结肠炎相关性结直肠癌的早期预防、诊断和精确治疗。
耿松 卢清军 任翔 蒋宏.
MicroRNAs在结直肠炎癌转化过程中的作用 [J]. 国际医药卫生导报, 2023, 29(7): 903-909.
Geng Song, Lu Qingjun, Ren Xiang, Jiang Hong.
Role of microRNAs in colorectal inflammatory cancer transformation [J]. International Medicine and Health Guidance News, 2023, 29(7): 903-909.
| [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660. [2] Grillo TG, Quaglio AEV, Beraldo RF, et al. MicroRNA expression in inflammatory bowel disease-associated colorectal cancer[J]. World J Gastrointest Oncol, 2021, 13(9):995-1016. DOI: 10.4251/wjgo.v13.i9.995. [3] Kobayashi T, Siegmund B, Le Berre C, et al. Ulcerative colitis[J]. Nat Rev Dis Primers, 2020, 6(1):74. DOI: 10.1038/s41572-020-0205-x. [4] Muthusami S, Ramachandran I, Krishnamoorthy S, et al. Regulation of microRNAs in inflammation-associated colorectal cancer: a mechanistic approach[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(1):67-76. DOI: 10.2174/1871530320666200917112802. [5] Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4):1202-1207. DOI: 10.1016/j.jaci.2017.08.034. [6] Ali SR, Humphreys KJ, Simpson KJ, et al. Functional high-throughput screen identifies microRNAs that promote butyrate-induced death in colorectal cancer cells[J]. Mol Ther Nucleic Acids, 2022, 30:30-47. DOI: 10.1016/j.omtn.2022.08.037. [7] Toiyama Y, Okugawa Y, Tanaka K, et al. A panel of methylated microRNA biomarkers for identifying high-risk patients with ulcerative colitis-associated colorectal cancer[J]. Gastroenterology, 2017, 153(6):1634-1646.e8. DOI: 10.1053/j.gastro.2017.08.037. [8] Yuan W, Guo YQ, Li XY, et al. MicroRNA-126 inhibits colon cancer cell proliferation and invasion by targeting the chemokine (C-X-C motif) receptor 4 and Ras homolog gene family, member A, signaling pathway[J]. Oncotarget, 2016, 7(37):60230-60244. DOI: 10.18632/oncotarget.11176. [9] Wu S, Yuan W, Luo W, et al. miR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer[J]. Mol Oncol, 2022, 16(19):3465-3489. DOI: 10.1002/1878-0261.13218. [10] Wu MY, Luo YX, Jia WX, et al. miRNA-320 inhibits colitis-associated colorectal cancer by regulating the IL-6R/STAT3 pathway in mice[J]. J Gastrointest Oncol, 2022, 13(2):695-709. DOI: 10.21037/jgo-22-237. [11] Sun JY, Huang Y, Li JP, et al. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin[J]. Biochem Biophys Res Commun, 2012, 420(4):787-792. DOI: 10.1016/j.bbrc.2012.03.075. [12] Pierdomenico M, Cesi V, Cucchiara S, et al. NOD2 is regulated by mir-320 in physiological conditions but this control is altered in inflamed tissues of patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2016, 22(2):315-326. DOI: 10.1097/MIB.0000000000000659. [13] Chen Y, Song YX, Wang ZN. The microRNA-148/152 family: multi-faceted players[J]. Mol Cancer, 2013, 12:43. DOI: 10.1186/1476-4598-12-43. [14] Zhu Y, Gu L, Li Y, et al. miR-148a inhibits colitis and colitis-associated tumorigenesis in mice[J]. Cell Death Differ, 2017, 24(12):2199-2209. DOI: 10.1038/cdd.2017.151. [15] Tang K, Wu Z, Sun M, et al. Elevated MMP10/13 mediated barrier disruption and NF-κB activation aggravate colitis and colon tumorigenesis in both individual or full miR-148/152 family knockout mice[J]. Cancer Lett, 2022, 529:53-69. DOI: 10.1016/j.canlet.2021.12.033. [16] Sathyanarayanan A, Chandrasekaran KS, Karunagaran D. microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells[J]. Biochem Biophys Res Commun, 2016, 480(4):528-533. DOI: 10.1016/j.bbrc.2016.10.054. [17] Garo LP, Ajay AK, Fujiwara M, et al. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer[J]. Nat Commun, 2021, 12(1):2419. DOI: 10.1038/s41467-021- 22641-y. [18] Wang J, Pei B, Yan J, et al. hucMSC-derived exosomes alleviate the deterioration of colitis via the miR-146a/SUMO1 axis[J]. Mol Pharm, 2022, 19(2):484-493. DOI: 10.1021/acs.molpharmaceut.1c00450. [19] Wei Y, Shao J, Wang Y, et al. Hsa-miR-370 inhibited P-selectin-induced cell adhesion in human colon adenocarcinoma cells[J]. Mol Cell Biochem, 2019, 450(1-2):159-166. DOI: 10.1007/s11010-018-3382-0. [20] Lin L, Wang D, Qu S, et al. miR-370-3p alleviates ulcerative colitis-related colorectal cancer in mice through inhibiting the inflammatory response and epithelial-mesenchymal transition[J]. Drug Des Devel Ther, 2020, 14:1127-1141. DOI: 10.2147/DDDT.S238124. [21] Kesharwani SS, Ahmad R, Bakkari MA, et al. Site-directed non-covalent polymer-drug complexes for inflammatory bowel disease (IBD): formulation development, characterization and pharmacological evaluation[J]. J Control Release, 2018, 290:165-179. DOI: 10.1016/j.jconrel.2018.08.004. [22] Montalto FI, De Amicis F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma[J]. Cells, 2020, 9(12):2648. DOI: 10.3390/cells9122648. [23] Brocato J, Costa M. SATB1 and 2 in colorectal cancer[J]. Carcinogenesis, 2015, 36(2):186-191. DOI: 10.1093/carcin/bgu322. [24] Sun X, Liu S, Chen P, et al. miR-449a inhibits colorectal cancer progression by targeting SATB2[J]. Oncotarget, 2016, 8(60):100975-100988. DOI: 10.18632/oncotarget. 10900. [25] Feng Y, Dong YW, Song YN, et al. MicroRNA‑449a is a potential predictor of colitis‑associated colorectal cancer progression[J]. Oncol Rep, 2018, 40(3):1684-1694. DOI: 10.3892/or.2018.6566. [26] Lv Z, Wei J, You W, et al. Disruption of the c-Myc/miR-200b-3p/PRDX2 regulatory loop enhances tumor metastasis and chemotherapeutic resistance in colorectal cancer[J]. J Transl Med, 2017, 15(1):257. DOI: 10.1186/s12967-017-1357-7. [27] Chen L, Wang X, Zhu Y, et al. miR‑200b‑3p inhibits proliferation and induces apoptosis in colorectal cancer by targeting Wnt1[J]. Mol Med Rep, 2018, 18(3):2571-2580. DOI: 10.3892/mmr.2018.9287. [28] Hedl M, Yan J, Abraham C. IRF5 and IRF5 disease-risk variants increase glycolysis and human M1 macrophage polarization by regulating proximal signaling and Akt2 activation[J]. Cell Rep, 2016, 16(9):2442-2455. DOI: 10.1016/j.celrep.2016.07.060. [29] Deng S, Wang H, Fan H, et al. Over-expressed miRNA-200b ameliorates ulcerative colitis-related colorectal cancer in mice through orchestrating epithelial-mesenchymal transition and inflammatory responses by channel of AKT2[J]. Int Immunopharmacol, 2018, 61:346-354. DOI: 10.1016/j.intimp.2018.06.024. [30] Mamoori A, Wahab R, Islam F, et al. Clinical and biological significance of miR-193a-3p targeted KRAS in colorectal cancer pathogenesis[J]. Hum Pathol, 2018, 71:145-156. DOI: 10.1016/j.humpath.2017.10.024. [31] Takahashi H, Takahashi M, Ohnuma S, et al. microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer[J]. BMC Cancer, 2017, 17(1):723. DOI: 10.1186/s12885-017-3739-x. [32] Pekow J, Meckel K, Dougherty U, et al. miR-193a-3p is a key tumor suppressor in ulcerative colitis-associated colon cancer and promotes carcinogenesis through upregulation of IL17RD[J]. Clin Cancer Res, 2017, 23(17):5281-5291. DOI: 10.1158/1078-0432.CCR-17-0171. [33] Dai X, Chen X, Chen Q, et al. MicroRNA-193a-3p reduces intestinal inflammation in response to microbiota via down-regulation of colonic PepT1[J]. J Biol Chem, 2015, 290(26):16099-16115. DOI: 10.1074/jbc.M115.659318. [34] Shen K, Liang Q, Xu K, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor[J]. Biochem Pharmacol, 2012, 84(3):320-330. DOI: 10.1016/j.bcp.2012.04.017. [35] Zou F, Mao R, Yang L, et al. Targeted deletion of miR-139-5p activates MAPK, NF-κB and STAT3 signaling and promotes intestinal inflammation and colorectal cancer[J]. FEBS J, 2016, 283(8):1438-1452. DOI: 10.1111/febs.13678. [36] Maoa R, Zou F, Yang L, et al. The loss of MiR-139-5p promotes colitis-associated tumorigenesis by mediating PI3K/AKT/Wnt signaling[J]. Int J Biochem Cell Biol, 2015, 69:153-161. DOI: 10.1016/j.biocel.2015.10.008. [37] Qin Z, Liu X. miR-124, a potential therapeutic target in colorectal cancer[J]. Onco Targets Ther, 2019, 12:749-751. DOI: 10.2147/OTT.S179501. [38] Polytarchou C, Hommes DW, Palumbo T, et al. MicroRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice[J]. Gastroenterology, 2015, 149(4):981-992.e11. DOI: 10.1053/j.gastro.2015. 05.057. [39] Taniguchi K, Sugito N, Kumazaki M, et al. Positive feedback of DDX6/c-Myc/PTB1 regulated by miR-124 contributes to maintenance of the Warburg effect in colon cancer cells[J]. Biochim Biophys Acta, 2015, 1852(9):1971-1980. DOI: 10.1016/j.bbadis.2015.06.022. [40] Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer[J]. Clin Rev Allergy Immunol, 2005, 28(3):187-196. DOI: 10.1385/CRIAI:28:3:187. [41] Zhang J, Lu Y, Yue X, et al. MiR-124 suppresses growth of human colorectal cancer by inhibiting STAT3[J]. PLoS One, 2013, 8(8):e70300. DOI: 10.1371/journal.pone.0070300. [42] Qin Z, Wan JJ, Sun Y, et al. Nicotine protects against DSS colitis through regulating microRNA-124 and STAT3[J]. J Mol Med (Berl), 2017, 95(2):221-233. DOI: 10.1007/s00109-016-1473-5. [43] Lu X, Yu Y, Tan S. The role of the miR-21-5p-mediated inflammatory pathway in ulcerative colitis[J]. Exp Ther Med, 2020, 19(2):981-989. DOI: 10.3892/etm.2019.8277. [44] Yan H, Zhang X, Xu Y. Aberrant expression of miR-21 in patients with inflammatory bowel disease: a protocol for systematic review and meta analysis[J]. Medicine (Baltimore), 2020, 99(17):e19693. DOI: 10.1097/MD.0000000000019693. [45] Shi C, Yang Y, Xia Y, et al. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer[J]. Gut, 2016, 65(9):1470-1481. DOI: 10.1136/gutjnl-2014-308455. [46] Wu F, Dong F, Arendovich N, et al. Divergent influence of microRNA-21 deletion on murine colitis phenotypes[J]. Inflamm Bowel Dis, 2014, 20(11):1972-1985. DOI: 10.1097/MIB.0000000000000201. [47] Liu Y, Zhu F, Li H, et al. MiR-155 contributes to intestinal barrier dysfunction in DSS-induced mice colitis via targeting HIF-1α/TFF-3 axis[J]. Aging (Albany NY), 2020, 12(14):14966-14977. DOI: 10.18632/aging.103555. [48] Svrcek M, El-Murr N, Wanherdrick K, et al. Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases[J]. Carcinogenesis, 2013, 34(4):828-834. DOI: 10.1093/carcin/bgs408. [49] Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155[J]. Cell Commun Signal, 2021, 19(1):90. DOI: 10.1186/s12964-021-00771-6. [50] Sun D, Yu F, Ma Y, et al. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1)[J]. J Biol Chem, 2013, 288(13):9508-9518. DOI: 10.1074/jbc.M112.367763. [51] Gwiggner M, Martinez-Nunez RT, Whiteoak SR, et al. MicroRNA-31 and microRNA-155 are overexpressed in ulcerative colitis and regulate IL-13 signaling by targeting interleukin 13 receptor α-1[J]. Genes (Basel), 2018, 9(2):85. DOI: 10.3390/genes9020085. [52] Shi T, Xie Y, Fu Y, et al. The signaling axis of microRNA-31/interleukin-25 regulates Th1/Th17-mediated inflammation response in colitis[J]. Mucosal Immunol, 2017, 10(4):983-995. DOI: 10.1038/mi.2016.102. [53] Tian Y, Xu J, Li Y, et al. MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice[J]. Gastroenterology, 2019, 156(8):2281-2296.e6. DOI: 10.1053/j.gastro.2019.02.023. [54] Song Y, Jiang K, Wang BM, et al. miR‑31 promotes tumorigenesis in ulcerative colitis‑associated neoplasia via downregulation of SATB2[J]. Mol Med Rep, 2020, 22(6):4801-4809. DOI: 10.3892/mmr.2020.11573. [55] Olive V, Bennett MJ, Walker JC, et al. miR-19 is a key oncogenic component of mir-17-92[J]. Genes Dev, 2009, 23(24):2839-2849. DOI: 10.1101/gad.1861409. [56] Chen B, She S, Li D, et al. Role of miR-19a targeting TNF-α in mediating ulcerative colitis[J]. Scand J Gastroenterol, 2013, 48(7):815-824. DOI: 10.3109/00365521.2013. 800991. [57] Wang T, Xu X, Xu Q, et al. miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops[J]. Oncogene, 2017, 36(23):3240-3251. DOI: 10.1038/onc.2016.468. [58] Zhang L, Li J, Wang Q, et al. The relationship between microRNAs and the STAT3-related signaling pathway in cancer[J]. Tumour Biol, 2017, 39(7):1010428317719869. DOI: 10.1177/1010428317719869. [59] Ma J, Yang Y, Fu Y, et al. PIAS3-mediated feedback loops promote chronic colitis-associated malignant transformation[J]. Theranostics, 2018, 8(11):3022-3037. DOI: 10.7150/thno.23046. [60] Liu L, Nie J, Chen L, et al. The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression[J]. PLoS One, 2013, 8(2):e55532. DOI: 10.1371/journal.pone.0055532. [61] Fang Y, Sun B, Xiang J, et al. MiR-301a promotes colorectal cancer cell growth and invasion by directly targeting SOCS6[J]. Cell Physiol Biochem, 2015, 35(1):227-236. DOI: 10.1159/000369690. [62] Zhang W, Zhang T, Jin R, et al. MicroRNA-301a promotes migration and invasion by targeting TGFBR2 in human colorectal cancer[J]. J Exp Clin Cancer Res, 2014, 33(1):113. DOI: 10.1186/s13046-014-0113-6. [63] He C, Yu T, Shi Y, et al. MicroRNA 301A promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1[J]. Gastroenterology, 2017, 152(6):1434-1448.e15. DOI: 10.1053/j.gastro.2017.01.049. [64] Yang Y, Bao Y, Yang GK, et al. MiR-214 sensitizes human colon cancer cells to 5-FU by targeting Hsp27[J]. Cell Mol Biol Lett, 2019, 24:22. DOI: 10.1186/s11658-019-0143-3. [65] Sun R, Liu Z, Han L, et al. miR-22 and miR-214 targeting BCL9L inhibit proliferation, metastasis, and epithelial-mesenchymal transition by down-regulating Wnt signaling in colon cancer[J]. FASEB J, 2019, 33(4):5411-5424. DOI: 10.1096/fj.201801798RR. [66] Chen DL, Wang ZQ, Zeng ZL, et al. Identification of microRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression[J]. Hepatology, 2014, 60(2):598-609. DOI: 10.1002/hep.27118. |
| [1] | 王凤燕 王胜果 于呈祥 韩志浩. 标准化碘密度诊断结直肠癌淋巴结转移的价值 [J]. 国际医药卫生导报, 2023, 29(7): 923-928. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||