[1] Jakovljevic MB, Johnson SC, Jonas JB, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study[J].JAMA Oncol,2018,4(11):1553-1568. DOI:10.1001/jamaoncol.2018.2706.
[2] Rustgi AK, El-Serag HB. Esophageal carcinoma[J]. N Engl J Med,2014,371(26):2499-2509. DOI:10.1056/NEJMra1314530.
[3] Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science,2018,359(6382):1350-1355. DOI:10.1126/science.aar4060.
[4] Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science,2015,348(6230):74-80. DOI:10.1126/science.aaa6204.
[5] Manson G, Norwood J, Marabelle A, et al. Biomarkers associated with checkpoint inhibitors[J].Ann Oncol,2016,27(7):1199-1206. DOI:10.1093/annonc/mdw181.
[6] Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy[J].Lancet Oncol,2016,17(12):e542-e551. DOI:10.1016/S1470-2045(16)30406-5.
[7] Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology[J].Nat Rev Clin Oncol,2017,14(7):399-416. DOI:10.1038/nrclinonc.2016.217.
[8] Porta C, Sica A, Riboldi E. Tumor-associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy[J].FEBS J,2018,285(4):717-733. DOI:10.1111/febs.14288.
[9] Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic[J].Nat Rev Clin Oncol,2016,13(4):228-241. DOI:10.1038/nrclinonc.2015.215.
[10] Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity[J].Nature,2001,410(6832):1107-1111. DOI:10.1038/35074122.
[11] Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting[J]. Annu Rev Immunol,2004,22:329-360. DOI:10.1146/annurev.immunol.22.012703.104803.
[12] Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer[J].N Engl J Med,2003,348(3):203-213. DOI:10.1056/NEJMoa020177.
[13] Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses[J].Science,2004,305(5681):200-205. DOI:10.1126/science.1100369.
[14] Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment[J].Nat Rev Immunol,2008,8(6):467-477. DOI:10.1038/nri2326.
[15] Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J].Nat Rev Cancer,2012,12(4):252-264. DOI:10.1038/nrc3239.
[16] Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J].Nat Med,2002,8(8):793-800. DOI:10.1038/nm730.
[17] Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J].J Exp Med,2000,192(7):1027-1034. DOI:10.1084/jem.192.7.1027.
[18] Chen K, Cheng G, Zhang F, et al. Prognostic significance of programmed death-1 and programmed death-ligand 1 expression in patients with esophageal squamous cell carcinoma[J].Oncotarget,2016,7(21):30772-30780. DOI:10.18632/oncotarget.8956.
[19] Jiang Y, Lo AWI, Wong A, et al. Prognostic significance of tumor-infiltrating immune cells and PD-L1 expression in esophageal squamous cell carcinoma[J].Oncotarget,2017,8(18):30175-30189. DOI:10.18632/oncotarget.15621.
[20] Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation[J].N Engl J Med,2015,372(4):320-330. DOI:10.1056/NEJMoa1412082.
[21] Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J].N Engl J Med,2016,375(19):1823-1833. DOI:10.1056/NEJMoa1606774.
[22] Drake CG, Lipson EJ, Brahmer JR. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer[J].Nat Rev Clin Oncol,2014,11(1):24-37. DOI:10.1038/nrclinonc.2013.208.
[23] Wolchok JD. PD-1 blockers[J]. Cell,2015,162(5):937. DOI:10.1016/j.cell.2015.07.045.
[24] Kudo T, Hamamoto Y, Kato K, et al. Nivolumab treatment for oesophageal squamous-cell carcinoma: an open-label, multicentre, phase 2 trial[J].Lancet Oncol,2017,18(5):631-639. DOI:10.1016/S1470-2045(17)30181-X.
[25] Kato K, Cho BC, Takahashi M, et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol,2019,20(11):1506-1517. DOI:10.1016/S1470-2045(19)30626-6.
[26] Doi T, Piha-Paul SA, Jalal SI, et al. Safety and antitumor activity of the anti-programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma[J].J Clin Oncol,2018,36(1):61-67. DOI:10.1200/JCO.2017.74.9846.
[27] Shah MA, Kojima T, Hochhauser D, et al. Efficacy and safety of pembrolizumab for heavily pretreated patients with advanced, metastatic adenocarcinoma or squamous cell carcinoma of the esophagus: the phase 2 keynote-180 study[J].JAMA Oncol,2019,5(4):546-550. DOI:10.1001/jamaoncol.2018.5441.
[28] Kojima T, Shah MA, Muro K, et al. Randomized phase Ⅲ keynote-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer[J]. J Clin Oncol,2020,38(35):4138-4148. DOI:10.1200/JCO.20.01888.
[29] Fujiwara Y, Iguchi H, Yamamoto N, et al. Tolerability and efficacy of durvalumab in Japanese patients with advanced solid tumors[J]. Cancer Sci,2019,110(5):1715-1723. DOI:10.1111/cas.14003.
[30] De Mello RA, Lordick F, Muro K, et al. Current and future aspects of immunotherapy for esophageal and gastric malignancies[J]. Am Soc Clin Oncol Educ Book,2019,39:237-247. DOI:10.1200/EDBK_236699.
[31] Minn AJ, Wherry EJ. Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling[J]. Cell,2016,165(2):272-275. DOI:10.1016/j.cell.2016.03.031.
[32] Cohen R, Hain E, Buhard O, et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status[J]. JAMA Oncol,2019,5(4):551-555. DOI:10.1001/jamaoncol.2018.4942.
[33] Shen FF, Pan Y, Li JZ, et al. High expression of HLA-DQA1 predicts poor outcome in patients with esophageal squamous cell carcinoma in Northern China[J]. Medicine (Baltimore),2019,98(8):e14454. DOI:10.1097/MD.0000000000014454.
[34] Zheng J, Xu C, Chu D, et al. Human leukocyte antigen G is associated with esophageal squamous cell carcinoma progression and poor prognosis[J]. Immunol Lett,2014,161(1):13-19. DOI:10.1016/j.imlet.2014.04.007.
[35] Zhang X, Lin A, Zhang JG, et al. Alteration of HLA-F and HLA I antigen expression in the tumor is associated with survival in patients with esophageal squamous cell carcinoma[J]. Int J Cancer,2013,132(1):82-89. DOI:10.1002/ijc.27621.
[36] Chen Q, Luo G, Zhang X. MiR-148a modulates HLA-G expression and influences tumor apoptosis in esophageal squamous cell carcinoma[J]. Exp Ther Med,2017,14(5):4448-4452. DOI:10.3892/etm.2017.5058.
[37] Baba Y, Yagi T, Kosumi K, et al. Morphological lymphocytic reaction, patient prognosis and PD-1 expression after surgical resection for oesophageal cancer[J]. Br J Surg,2019,106(10):1352-1361. DOI:10.1002/bjs.11301.
[38] Miyasato Y, Shiota T, Ohnishi K, et al. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer[J]. Cancer Sci,2017,108(8):1693-1700. DOI:10.1111/cas.13287.
[39] Komohara Y, Hasita H, Ohnishi K, et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma[J]. Cancer Sci,2011,102(7):1424-1431. DOI:10.1111/j.1349-7006.2011.01945.x.
[40] Shigeoka M, Urakawa N, Nakamura T, et al. Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma[J]. Cancer Sci,2013,104(8):1112-1119. DOI:10.1111/cas.12188.
[41] Yagi T, Baba Y, Okadome K, et al. Tumour-associated macrophages are associated with poor prognosis and programmed death ligand 1 expression in oesophageal cancer[J]. Eur J Cancer,2019,111:38-49. DOI:10.1016/j.ejca.2019.01.018.
[42] Gabrilovich DI. Myeloid-derived suppressor cells[J]. Cancer Immunol Res,2017,5(1):3-8. DOI:10.1158/2326-6066.CIR-16-0297.
[43] Gabitass RF, Annels NE, Stocken DD, et al. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13[J]. Cancer Immunol Immunother,2011,60(10):1419-1430. DOI:10.1007/s00262-011-1028-0.
[44] Chen MF, Kuan FC, Yen TC, et al. IL-6-stimulated CD11b+ CD14+ HLA-DR- myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus[J]. Oncotarget,2014,5(18):8716-8728. DOI:10.18632/oncotarget.2368.
[45] Karakasheva TA, Waldron TJ, Eruslanov E, et al. CD38-expressing myeloid-derived suppressor cells promote tumor growth in a murine model of esophageal cancer[J]. Cancer Res,2015,75(19):4074-4085. DOI:10.1158/0008-5472.CAN-14-3639.
|