[1] Pickkers
P, Darmon M, Hoste E, et al. Acute kidney injury in the critically ill: an
updated review on pathophysiology and management[J]. Intensive Care Med,
2021,47(8):835-850. DOI: 10.1007/s00134-021-06454-7.
[2] Weber TJ, Liu S, Indridason OS, et al.
Serum FGF23 levels in normal and disordered phosphorus homeostasis[J]. J Bone
Miner Res, 2003, 18(7):1227-1234. DOI: 10.1359/jbmr.2003.18.7.1227.
[3] Wolf M, Koch TA, Bregman DB. Effects of
iron deficiency anemia and its treatment on fibroblast growth factor 23 and
phosphate homeostasis in women[J]. J Bone Miner Res, 2013, 28(8):1793-1803.
DOI: 10.1002/jbmr.1923.
[4] Yamashita T. Structural and biochemical
properties of fibroblast growth factor 23[J]. Ther Apher Dial,
2005,9(4):313-318. DOI: 10.1111/j.1744-9987.2005.00288.x.
[5] Cui S, Vaingankar SM, Stenger A, et al.
Stability of fibroblast growth factor 23 in human plasma[J]. J Appl Lab Med,
2017,1(6):729-734. DOI: 10.1373/jalm.2016.022467.
[6] Smith ER, McMahon LP, Holt SG.
Fibroblast growth factor 23[J]. Ann Clin Biochem, 2014,51(Pt 2):203-227. DOI:
10.1177/0004563213510708.
[7] Chen G, Liu Y, Goetz R, et al. α-Klotho
is a non-enzymatic molecular scaffold for FGF23 hormone signalling[J]. Nature,
2018,553(7689):461-466. DOI: 10.1038/nature25451.
[8] Isakova T, Cai X, Lee J, et al.
Longitudinal FGF23 trajectories and mortality in patients with CKD[J]. J Am Soc
Nephrol, 2018,29(2):579-590. DOI: 10.1681/ASN.2017070772.
[9] Andrukhova O, Slavic S, Odörfer KI, et
al. Experimental myocardial infarction upregulates circulating fibroblast
growth factor-23[J]. J Bone Miner Res, 2015,30(10):1831-1839. DOI:
10.1002/jbmr.2527.
[10] David V, Martin A, Isakova T, et al.
Inflammation and functional iron deficiency regulate fibroblast growth factor
23 production[J]. Kidney Int, 2016,89(1):135-146. DOI: 10.1038/ki.2015.290.
[11] Kuro-o M, Matsumura Y, Aizawa H, et al.
Mutation of the mouse klotho gene leads to a syndrome resembling ageing[J].
Nature, 1997,390(6655):45-51. DOI: 10.1038/36285.
[12] Matsumura Y, Aizawa H, Shiraki-Iida T,
et al. Identification of the human klotho gene and its two transcripts encoding
membrane and secreted klotho protein[J]. Biochem Biophys Res Commun,
1998,242(3):626-630. DOI: 10.1006/bbrc.1997.8019.
[13] Panesso MC, Shi M, Cho HJ, et al. Klotho
has dual protective effects on cisplatin-induced acute kidney injury[J]. Kidney
Int, 2014,85(4):855-870. DOI: 10.1038/ki.2013.489.
[14] Breusegem SY, Takahashi H, Giral-Arnal
H, et al. Differential regulation of the renal sodium-phosphate cotransporters
NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency[J]. Am J Physiol
Renal Physiol, 2009,297(2):F350-361. DOI: 10.1152/ajprenal.90765.2008.
[15] Razzaque MS. FGF23, Klotho and vitamin D
interactions: what have we learned from in vivo mouse genetics studies?[J].
Endocrine Fgfs and Klothos, 2012, 728: 84-91. DOI:10.1007/978-1-4614-0887-1_5.
[16] Wolf MT, An SW, Nie M, et al. Klotho
up-regulates renal calcium channel transient receptor potential vanilloid 5
(TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms[J]. J
Biol Chem, 2014,289(52):35849-35857. DOI: 10.1074/jbc.M114. 616649.
[17] Neyra JA, Hu MC. Potential application
of klotho in human chronic kidney disease[J]. Bone,2017,100:41-49. DOI:
10.1016/j.bone.2017.01.017.
[18] Lin W, Zhang Q, Liu L, et al. Klotho
restoration via acetylation of peroxisome proliferation-activated receptor γ
reduces the progression of chronic kidney disease[J]. Kidney Int,
2017,92(3):669-679. DOI: 10.1016/j.kint.2017.02.023.
[19] Cheng L, Zhang L, Yang J, et al.
Activation of peroxisome proliferator-activated receptor γ inhibits vascular
calcification by upregulating Klotho[J]. Exp Ther Med, 2017,13(2):467-474. DOI:
10.3892/etm.2016.3996.
[20] Leaf DE, Wolf M, Stern L. Elevated
FGF-23 in a patient with rhabdomyolysis-induced acute kidney injury[J]. Nephrol
Dial Transplant, 2010,25(4):1335-1337. DOI: 10.1093/ndt/gfp682.
[21] Leaf DE, Wolf M, Waikar SS, et al.
FGF-23 levels in patients with AKI and risk of adverse outcomes[J]. Clin J Am
Soc Nephrol, 2012,7(8):1217-1223. DOI: 10.2215/CJN.00550112.
[22] Zhang M, Hsu R, Hsu CY, et al. FGF-23
and PTH levels in patients with acute kidney injury: a cross-sectional case
series study[J]. Ann Intensive Care, 2011,1(1):21. DOI: 10.1186/2110-5820-1-21.
[23] Brown JR, Katz R, Ix JH, et al.
Fibroblast growth factor-23 and the long-term risk of hospital-associated AKI
among community-dwelling older individuals[J]. Clin J Am Soc Nephrol,
2014,9(2):239-246. DOI: 10.2215/CJN.05830513.
[24] Hanudel MR, Wesseling-Perry K, Gales B,
et al. Effects of acute kidney injury and chronic hypoxemia on fibroblast
growth factor 23 levels in pediatric cardiac surgery patients[J]. Pediatr
Nephrol, 2016,31(4):661-669. DOI: 10.1007/s00467-015-3257-5.
[25] Neyra JA, Moe OW, Hu MC. Fibroblast
growth factor 23 and acute kidney injury[J]. Pediatr Nephrol,
2015,30(11):1909-1918. DOI: 10.1007/s00467-014-3006-1.
[26] Christov M, Waikar SS, Pereira RC, et
al. Plasma FGF23 levels increase rapidly after acute kidney injury[J]. Kidney
Int, 2013,84(4):776-785. DOI: 10.1038/ki.2013.150.
[27] Egli-Spichtig D, Zhang MYH, Perwad F.
Fibroblast growth factor 23 expression is increased in multiple organs in mice
with folic acid-induced acute kidney injury[J]. Front Physiol, 2018,9:1494.
DOI: 10.3389/fphys.2018.01494.
[28] Farrow EG, Yu X, Summers LJ, et al. Iron
deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR)
phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice[J]. Proc Natl
Acad Sci U S A, 2011,108(46):E1146-1155. DOI: 10.1073/pnas.1110905108.
[29] Durlacher-Betzer K, Hassan A, Levi R, et
al. Interleukin-6 contributes to the increase in fibroblast growth factor 23
expression in acute and chronic kidney disease[J]. Kidney Int,
2018,94(2):315-325. DOI: 10.1016/j.kint.2018. 02.026.
[30] Simic P, Kim W, Zhou W, et al.
Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney[J].
J Clin Invest, 2020,130(3):1513-1526. DOI: 10.1172/JCI131190.
[31] Toro L, Barrientos V, León P, et al.
Erythropoietin induces bone marrow and plasma fibroblast growth factor 23
during acute kidney injury[J]. Kidney Int, 2018,93(5):1131-1141. DOI:
10.1016/j.kint.2017.11.018.
[32] Neyra JA, Li X, Mescia F, et al. Urine
klotho is lower in critically ill patients with versus without acute kidney
injury and associates with major adverse kidney events[J]. Crit Care Explor,
2019,1(6):e0016. DOI: 10.1097/cce.0000000000000016.
[33] Hu MC, Moe OW. Klotho as a potential
biomarker and therapy for acute kidney injury[J]. Nat Rev Nephrol,
2012,8(7):423-429. DOI: 10.1038/nrneph.2012.92.
[34] Shi M, Flores B, Gillings N, et al.
αKlotho mitigates progression of aki to ckd through activation of autophagy[J].
J Am Soc Nephrol, 2016,27(8):2331-2345. DOI: 10.1681/ASN.2015060613.
[35] Moreno JA, Izquierdo MC, Sanchez-Niño
MD, et al. The inflammatory cytokines TWEAK and TNFα reduce renal klotho
expression through NFκB[J]. J Am Soc Nephrol, 2011, 22(7):1315-1325. DOI:
10.1681/ASN.2010101073.
[36] Thurston RD, Larmonier CB, Majewski PM,
et al. Tumor necrosis factor and interferon-gamma down-regulate Klotho in mice
with colitis[J]. Gastroenterology, 2010,138(4):1384-1394, e1-2. DOI:
10.1053/j.gastro.2009.12.002.
[37] Qian Y, Guo X, Che L, et al. Klotho
reduces necroptosis by targeting oxidative stress involved in renal
ischemic-reperfusion injury[J]. Cell Physiol Biochem, 2018,45(6):2268-2282.
DOI: 10.1159/000488172.
[38] Chen X, Tong H, Chen Y, et al. Klotho
ameliorates sepsis-induced acute kidney injury but is irrelevant to
autophagy[J]. Onco Targets Ther, 2018,11:867-881. DOI: 10.2147/OTT.S156891.
[39] Lv J, Chen J, Wang M, et al. Klotho
alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting
M2 macrophage polarization[J]. Aging (Albany NY), 2020,12(10):9139-9150. DOI:
10.18632/aging.103183.
[40] Li H, Chen W, Chen Y, et al. Neferine
attenuates acute kidney injury by inhibiting nf-κb signaling and upregulating
klotho expression[J]. Front Pharmacol, 2019,10:1197. DOI: 10.3389/fphar.2019.01197.
[41] Fayed A, Radwan WA, Amin M, et al.
Prediction of mortality and need for renal replacement therapy in patients of
acute kidney injury using fibroblast growth factor 23[J]. Saudi J Kidney Dis
Transpl, 2019, 30(5):1044-1051. DOI: 10.4103/1319-2442.270259.
|