[1] Jiang X,
Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease
[J]. Nat Rev Mol Cell Biol, 2021, 22(4):266-282. DOI: 10.1038/s41580- 020-
00324-8.
[2] Tao N, Li K, Liu J. Molecular mechanisms
of ferroptosis and its role in pulmonary disease [J]. Oxid Med Cell Longev,
2020, 2020: 9547127. DOI: 10.1155/2020/9547127.
[3] Yamada N, Karasawa T, Wakiya T, et al.
Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver
transplantation: potential role of ferroptosis[J]. Am J Transplant, 2020,
20(6): 1606-1618. DOI:10.1111/ajt.15773.
[4] Dixon SJ, Lemberg KM, Lamprecht MR, et
al. Ferroptosis: an iron-dependent form of nonapoptotic cell death [J]. Cell,
2012, 149(5):1060-1072. DOI: 10.1016/j.cell.2012. 03.042.
[5] Tang D, Chen X, Kang R, et al.
Ferroptosis: molecular mechanisms and health implications [J]. Cell Res, 2021,
31(2): 107-125. DOI: 10.1038/s41422-020-00441-1.
[6] Xie Y, Hou W, Song X, et al.
Ferroptosis: process and function [J]. Cell Death Differ, 2016, 23(3): 369-379.
DOI: 10.1038/cdd.2015.158.
[7] Bogdan AR, Miyazawa M, Hashimoto K, et
al. Regulators of iron homeostasis: new players in metabolism, cell death, and
disease [J]. Trends Biochem Sci, 2016, 41(3):274-286. DOI:
10.1016/j.tibs.2015.11.012.
[8] Gao M, Monian P, Quadri N, et al.
Glutaminolysis and transferrin regulate ferroptosis [J]. Mol Cell, 2015, 59(2):
298-308. DOI: 10.1016/j.molcel.2015.06.011.
[9] Feng H, Schorpp K, Jin J, et al.
Transferrin receptor is a specific ferroptosis marker [J]. Cell Rep, 2020,
30(10): 3411-3423.e7. DOI: 10.1016/j.celrep.2020.02.049.
[10] Mancias JD, Wang X, Gygi SP, et al.
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating
ferritinophagy [J]. Nature, 2014, 509(7498): 105-109. DOI: 10.1038/nature13148.
[11] Dixon SJ, Patel DN, Welsch M, et al.
Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic
reticulum stress and ferroptosis [J]. Elife, 2014, 3: e02523. DOI:
10.7554/eLife.02523.
[12] Wu G, Fang YZ, Yang S, et al.
Glutathione metabolism and its implications for health [J]. J Nutr, 2004, 134(3):489-492.
DOI: 10.1093/jn/134.3.489.
[13] Chen X, Kang R, Kroemer G, et al.
Broadening horizons: the role of ferroptosis in cancer [J]. Nat Rev Clin Oncol,
2021, 18(5): 280-296. DOI: 10.1038/s41571-020- 00462-0.
[14] Mandal PK, Seiler A, Perisic T, et al.
System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione
deficiency [J]. J Biol Chem, 2010, 285(29): 22244-22253. DOI:
10.1074/jbc.M110.121327.
[15] Gao M, Yi J, Zhu J, et al. Role of
mitochondria in ferroptosis [J]. Mol Cell, 2019, 73(2): 354-363.e3. DOI:
10.1016/j.molcel.2018.10.042.
[16] Li D, Li Y. The interaction between
ferroptosis and lipid metabolism in cancer [J]. Signal Transduct Target Ther,
2020, 5(1): 108. DOI: 10.1038/s41392-020-00216-5.
[17] Chen LD, Wu RH, Huang YZ, et al. The
role of ferroptosis in chronic intermittent hypoxia-induced liver injury in
rats [J]. Sleep Breath, 2020, 24(4): 1767-1773. DOI:
10.1007/s11325-020-02091-4.
[18] Kagan VE, Mao G, Qu F, et al. Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis [J]. Nat Chem Biol,
2017, 13(1): 81-90. DOI: 10.1038/nchembio.2238.
[19] Yuan H, Li X, Zhang X, et al.
Identification of ACSL4 as a biomarker and contributor of ferroptosis [J].
Biochem Biophys Res Commun, 2016, 478(3): 1338-1343. DOI:
10.1016/j.bbrc.2016.08.124.
[20] Sheikh Abdul Kadir SH, Miragoli M,
Abu-Hayyeh S, et al. Bile acid-induced arrhythmia is mediated by muscarinic M2
receptors in neonatal rat cardiomyocytes [J]. PLoS One, 2010, 5(3): e9689. DOI:
10.1371/journal.pone. 0009689.
[21] Goodwin B, Jones SA, Price RR, et al. A
regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses
bile acid biosynthesis [J]. Mol Cell, 2000, 6(3): 517-526. DOI:
10.1016/s1097-2765(00)00051-4.
[22] Inagaki T, Choi M, Moschetta A, et al.
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate
bile acid homeostasis [J]. Cell Metab, 2005, 2(4): 217-225. DOI:
10.1016/j.cmet.2005.09.001.
[23] Ruan Y, Liu R, Gong L. Investigation of
dysregulated lipid metabolism in diabetic mice via targeted metabolomics of
bile acids in enterohepatic circulation [J]. Rapid Commun Mass Spectrom, 2022,
36(6): e9236. DOI: 10.1002/rcm.9236.
[24] Hu S, Chen Y, Zhao S, et al. Ripened
Pu-Erh tea improved the enterohepatic circulation in a Circadian rhythm
disorder mice model [J]. J Agric Food Chem, 2021, 69(45): 13533-13545. DOI:
10.1021/acs.jafc.1c05338.
[25] Sinal CJ, Tohkin M, Miyata M, et al.
Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid
homeostasis [J]. Cell, 2000, 102(6): 731-744. DOI:
10.1016/s0092-8674(00)00062-3.
[26] Xu Q, Hu L, Chen S, et al. Parental
exposure 3-methylcholanthrene disturbed the enterohepatic circulation in F1
generation of mice [J]. Chemosphere, 2022, 286(Pt 1): 131681. DOI:
10.1016/j.chemosphere. 2021.131681.
[27] Wiest R, Lawson M, Geuking M.
Pathological bacterial translocation in liver cirrhosis [J]. J Hepatol, 2014,
60(1): 197-209. DOI: 10.1016/j.jhep.2013.07.044.
[28] Qi L, Dai W, Kong J, et al.
Cholecystectomy as a risk factor for metabolic dysfunction-associated fatty
liver disease: unveiling the metabolic and chronobiologic clues behind the bile
acid enterohepatic circulation [J]. J Physiol Biochem, 2021, 77(4): 497-510.
DOI: 10.1007/s13105-020-00782-w.
[29] Kakiyama G, Pandak WM, Gillevet PM, et
al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis
[J]. J Hepatol, 2013, 58(5): 949-955. DOI: 10.1016/j.jhep. 2013.01.003.
[30] Lewerenz J, Hewett SJ, Huang Y, et al.
The cystine/glutamate antiporter system x(c)(-) in health and disease: from
molecular mechanisms to novel therapeutic opportunities [J]. Antioxid Redox
Signal, 2013, 18(5): 522-555. DOI: 10.1089/ars.2011.4391.
|