[1] Tan P, Yeoh KG. Genetics and molecular pathogenesis of gastric adenocarcinoma[J].Gastroenterology,2015,149(5):1153-1162.e3.DOI:10.1053/j.gastro.2015.05.059.
[2] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3):229-263.DOI:10.3322/caac.21834.
[3] Gakuhara A, Miyazaki Y, Takahashi T, et al. Laparoscopic total gastrectomy with pancreatosplenectomy after neoadjuvant chemotherapy for advanced gastric cancer with adjacent organs invasion[J].Gan To Kagaku Ryoho,2017,44(12):1805-1807.
[4] Zhang Y, Lou Y, Wang J, et al. Research status and molecular mechanism of the traditional Chinese medicine and antitumor therapy combined strategy based on tumor microenvironment[J].Front Immunol,2021,11:609705.DOI:10.3389/fimmu.2020.609705.
[5] Ye L, Jia Y, Ji KE, et al. Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis[J].Oncol Lett,2015,10(3):1240-1250.DOI:10.3892/ol.2015.3459.
[6] 郭秋均. 西黄丸抑制胃癌细胞增殖及其血管生成拟态形成的机制探讨[D]. 北京:北京中医药大学,2017.
[7] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2021,71(3):209-249.DOI:10.3322/caac.21660.
[8] Dai Z, Tan C, Wang J, et al. Traditional Chinese medicine for gastric cancer: an evidence mapping[J].Phytother Res,2024,38(6):2707-2723.DOI:10.1002/ptr.8155.
[9] Ye HN, Liu XY, Qin BL. Research progress of integrated traditional Chinese and western medicine in the treatment of advanced gastric cancer[J].World J Gastrointest Oncol,2023,15(1):69-75.DOI:10.4251/wjgo.v15.i1.69.
[10] Takahashi M, Sung B, Shen Y, et al. Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family[J].Carcinogenesis,2012,33(12):2441-2449.DOI:10.1093/carcin/bgs286.
[11] Wang D, Liu X, Hong W, et al. Muscone abrogates breast cancer progression through tumor angiogenic suppression via VEGF/PI3K/Akt/MAPK signaling pathways[J].Cancer Cell Int,2024,24(1):214.DOI:10.1186/s12935-024-03401-6.
[12] Fan P, Jordan VC. PERK, beyond an unfolded protein response sensor in estrogen-induced apoptosis in endocrine-resistant breast cancer[J].Mol Cancer Res,2022,20(2):193-201.DOI:10.1158/1541-7786.MCR-21-0702.
[13] Wang J, Xing H, Qin X, et al. Pharmacological effects and mechanisms of muscone[J].J Ethnopharmacol,2020,262:113120.DOI:10.1016/j.jep.2020.113120.
[14] Lv M, Ding R, Ma P, et al. Network pharmacology analysis on the mechanism of xihuangwan in treating rectal cancer and radiation enteritis[J].Curr Pharm Des,2024,30(9):683-701.DOI:10.2174/0113816128287232240- 213105913.
[15] Pratheeshkumar P, Budhraja A, Son YO, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways[J].PLoS One,2012,7(10):e47516.DOI:10.1371/journal.pone.0047516.
[16] Yang F, Jiang X, Song L, et al. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo[J].Oncol Rep,2016,35(3):1602-1610.DOI:10.3892/or.2015.4481.
[17] Liao X, Yan S, Li J, et al. CD36 and its role in regulating the tumor microenvironment[J].Curr Oncol,2022,29(11):8133-8145.DOI:10.3390/curroncol29110642.
[18] Zhao L, Tang S, Chen F, et al. Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis[J].Mol Med,2024,30(1):96.DOI:10.1186/s10020-024-00866-z.
[19] Hu W, Li S, Zhang S, et al. GJA1 is a prognostic biomarker and correlated with immune infiltrates in colorectal cancer[J].Cancer Manag Res,2020,12:11649-11661.DOI:10.2147/CMAR.S235500.
[20] Huang X, Zhang F, He D, et al. Immune-related gene SERPINE1 is a novel biomarker for diffuse lower-grade gliomas via large-scale analysis[J].Front Oncol,2021,11:646060.DOI:10.3389/fonc.2021.646060.
[21] Dharshini LCP, Rasmi RR, Kathirvelan C, et al. Regulatory components of oxidative stress and inflammation and their complex interplay in carcinogenesis[J].Appl Biochem Biotechnol,2023,195(5):2893-2916.DOI:10.1007/s12010-022-04266-z.
[22] Leiphrakpam PD, Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment[J].Int J Mol Sci,2024,25(6):3178.DOI:10.3390/ijms25063178.
[23] Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J].Mol Cancer,2023,22(1):138.DOI:10.1186/s12943-023-01827-6.
[24] Morgos DT, Stefani C, Miricescu D, et al. Targeting PI3K/AKT/mTOR and mapk signaling pathways in gastric cancer[J].Int J Mol Sci,2024,25(3):1848.DOI:10.3390/ijms25031848.
[25] Laha D, Grant R, Mishra P, et al. The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment[J].Front Immunol,2021,12:656908.DOI:10.3389/fimmu.2021.656908.
[26] Shibabaw T, Teferi B, Ayelign B. The role of Th-17 cells and IL-17 in the metastatic spread of breast cancer: as a means of prognosis and therapeutic target[J].Front Immunol,2023,14:1094823.DOI:10.3389/fimmu.2023.1094823.
[27] So L, Obata-Ninomiya K, Hu A, et al. Regulatory T cells suppress CD4+ effector T cell activation by controlling protein synthesis[J].J Exp Med,2023,220(3):e20221676.DOI:10.1084/jem.20221676.
[28] Liu J, Geng X, Hou J, et al. New insights into M1/M2 macrophages: key modulators in cancer progression[J].Cancer Cell Int,2021,21(1):389.DOI:10.1186/s12935-021-02089-2.
|