[1] 李秀钰,胡绍雯,朱惠芳.白血病干细胞在急性髓系白血病治疗中的研究进展[J].中国现代医学杂志,2023,33(21):49-57. DOI:10.3969/j.issn.1005-8982.2023.21.008.
[2] 胡文婷,沈树红.儿童急性髓系白血病分子机制的临床应用和展望[J].中国小儿血液与肿瘤杂志,2024,29(2):74-78. DOI:10.3969/j.issn.1673-5323.2024.02.002.
[3] 卜凡丹,王刚,陈志鑫,等.儿童急性髓系白血病的预后情况及相关影响因素[J].实用癌症杂志,2022,37(11):1879-1881,1885. DOI:10.3969/j.issn.1001-5930.2022. 11.037.
[4] 韩婷婷,巩晓文,张然然,等.儿童急性髓系白血病伴骨髓增生异常相关改变临床特征及预后分析[J].中国当代儿科杂志,2021,23(3):271-278. DOI:10.7499/j.issn.1008-8830. 2009176.
[5] 赵明一,李嘉华,江华.儿童急性髓系白血病造血干细胞移植后复发的预防和治疗[J].临床儿科杂志,2023,41(3):167-174. DOI:10.12372/jcp.2022.22e1591.
[6] 胡绍燕.解读美国移植与细胞治疗协会关于造血干细胞移植治疗儿童急性髓系白血病的指南[J].中国小儿血液与肿瘤杂志,2024,29(2):128-136. DOI:10.3969/j.issn.1673- 5323.2024.02.014.
[7] 金亚,张教国.LncRNA XIST调控miR-200b/ZEB1轴参与儿童急性髓系白血病阿柔比星耐药的机制研究[J].中国免疫学杂志,2022,38(20):2450-2454. DOI:10.3969/j.issn.1000-484X.2022.20.004.
[8] 张静,何欢,曾雪倩,等.急性髓系白血病耐药相关信号通路的研究进展[J].河北医学,2021,27(1):167-170. DOI:10.3969/J.issn.1006-6233.2021.01.039.
[9] 曹蓝,江兆清,刘文洁,等.地西他滨联合半量CAG方案治疗≥70岁的初诊急性髓系白血病患者疗效观察[J].中国实验血液学杂志,2023,31(3):633-642. DOI:10.19746/j.cnki.issn1009-2137.2023.03.003.
[10] 李志月,赵慧芳,张莉,等.酪氨酸激酶抑制剂联合地西他滨、高三尖杉酯碱、干扰素维持治疗慢性髓性白血病急变患者的疗效分析[J].中国实验血液学杂志,2023,31(3):649-653. DOI:10.19746/j.cnki.issn1009-2137. 2023. 03.005.
[11] 娄典,刘利,秦炜炜.地西他滨联合芦可替尼治疗老年不典型慢性粒细胞白血病:1例报道并文献复习[J].解放军医学杂志,2023,48(2):211-217. DOI:10.11855/j.issn.0577- 7402.2023.02.0211.
[12] 曹阳,刘月,刘琰,等.地西他滨联合安罗替尼对多发性骨髓瘤细胞增殖和凋亡的影响[J].中国实验血液学杂志,2023,31(2):442-447. DOI:10.19746/j.cnki.issn1009-2137. 2023.02.019.
[13] 刘淑芳,李丽娜,杨国.观察地西他滨联合复方皂矾丸对骨髓异常增生综合征的临床疗效以及对其机体炎症、生存质量的影响[J].临床和实验医学杂志,2023,22(2):161-164. DOI:10.3969/j.issn.1671-4695.2023.02.015.
[14] 王晖,李艳春,高秋英,等.伊马替尼联合重组人干扰素α-2b治疗加速期慢性髓性白血病患者的疗效及对血清MMP-2、SALL4 mRNA和AGP水平的影响[J].中国临床新医学,2023,16(5):468-473. DOI:10.3969/j.issn.1674-3806. 2023.05.10.
[15] 方建培,陈纯,金润铭.儿童白血病的诊断和治疗[M].北京:人民卫生出版社,2008.
[16] 李慧敏,王娅萍,黄婕,等.CLAG-M/I方案治疗儿童复发/难治急性髓系白血病的临床疗效和安全性分析[J].中华血液学杂志,2022,43(4):342-345. DOI:10.3760/cma.j.issn.0253-2727.2022.04.013.
[17] Kantarjian H, Kadia T, DiNardo C, et al. Acute myeloid leukemia: current progress and future directions[J]. Blood Cancer J, 2021, 11(2):41. DOI: 10.1038/s41408-021-00425-3.
[18] Pandey R, Ramdas B, Wan C, et al. SHP2 inhibition reduces leukemogenesis in models of combined genetic and epigenetic mutations[J]. J Clin Invest, 2019, 129(12):5468-5473. DOI: 10.1172/JCI130520.
[19] Xiao Q, Lei L, Ren J, et al. Mutant NPM1-regulated FTO-mediated m6A demethylation promotes leukemic cell survival via PDGFRB/ERK signaling axis[J]. Front Oncol, 2022, 12:817584. DOI: 10.3389/fonc.2022.817584.
[20] Stelmach P, Trumpp A. Leukemic stem cells and therapy resistance in acute myeloid leukemia[J]. Haematologica, 2023, 108(2):353-366. DOI: 10.3324/haematol.2022. 280800.
[21] Levin M, Stark M, Ofran Y, et al. Deciphering molecular mechanisms underlying chemoresistance in relapsed AML patients: towards precision medicine overcoming drug resistance[J]. Cancer Cell Int, 2021, 21(1):53. DOI: 10.1186/s12935-021-01746-w.
[22] van Gils N, Denkers F, Smit L. Escape from treatment; the different faces of leukemic stem cells and therapy resistance in acute myeloid leukemia[J]. Front Oncol, 2021, 11:659253. DOI: 10.3389/fonc.2021.659253.
[23] Jan Z, Ahmed WS, Biswas KH, et al. Identification of a potential DNA methyltransferase (DNMT) inhibitor[J]. J Biomol Struct Dyn, 2024, 42(9):4730-4744. DOI: 10.1080/07391102.2023.2233637.
[24] Patel AA, Cahill K, Saygin C, et al. Cedazuridine/decitabine: from preclinical to clinical development in myeloid malignancies[J]. Blood Adv, 2021, 5(8):2264-2271. DOI: 10.1182/bloodadvances.2020002929.
[25] Li L, Liu W, Sun Q, et al. Decitabine downregulates TIGAR to induce apoptosis and autophagy in myeloid leukemia cells[J]. Oxid Med Cell Longev, 2021, 2021:8877460. DOI: 10.1155/2021/8877460.
[26] Yokota A, Hirai H, Sato R, et al. C/EBPβ is a critical mediator of IFN-α-induced exhaustion of chronic myeloid leukemia stem cells[J]. Blood Adv, 2019, 3(3):476-488. DOI: 10.1182/bloodadvances.2018020503.
[27] Heibl S, Buxhofer-Ausch V, Schmidt S, et al. A phase 1 study to evaluate the feasibility and efficacy of the addition of ropeginterferon alpha-2b to imatinib treatment in patients with chronic phase chronic myeloid leukemia (CML) not achieving a deep molecular response (molecular remission 4.5)-AGMT_CML 1[J]. Hematol Oncol, 2020, 38(5):792-798. DOI: 10.1002/hon.2786.
[28] Hayashi K, Ikegame K, Takahashi N. The combination of interferon-alpha and ponatinib enables faster and deeper molecular responses in patient with de novo blast crisis of CML: interferon-alpha may return as a CML treatment[J]. Case Rep Hematol, 2021, 2021:5518727. DOI: 10.1155/2021/5518727.
[29] Furlan A, Rossi MC, Gherlinzoni F, et al. Prompt hematological recovery in response to a combination of pegylated interferon α-2a and rituximab in a profoundly immuno-suppressed hairy cell leukemia patient with a mycobacterial infection at onset: benefits and drawbacks of rapid immune reconstitution[J]. Hematol Rep, 2022, 14(2):135-142. DOI: 10.3390/hematolrep14020020.
[30] Assanto GM, Riemma C, Malaspina F, et al. The current role of interferon in hairy cell leukaemia: clinical and molecular aspects[J]. Br J Haematol, 2021, 194(1):78-82. DOI: 10.1111/bjh.17440.
|