[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492.
[2] Saito M, Momma T, Kono K. Targeted therapy according to next generation sequencing-based panel sequencing[J]. Fukushima J Med Sci, 2018, 64(1): 9-14. DOI: 10.5387/fms.2018-02.
[3] Tao Z, Shi A, Li R, et al. Microarray bioinformatics in cancer-a review[J]. J BUON, 2017, 22(4): 838-843.
[4] Luo X J, Zhao Q, Liu J, et al. Novel genetic and epigenetic biomarkers of prognostic and predictive significance in stage Ⅱ/Ⅲ colorectal cancer [J]. Mol Ther, 2021,29(2): 587-596. DOI: 10.1016/j.ymthe.2020.12.017.
[5] Nassar FJ, Msheik ZS, Nasr RR, et al. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction [J]. Clin Epigenetics, 2021, 13(1): 111. DOI: 10.1186/s13148-021-01095-5.
[6] Zhao B, Baloch Z, Ma Y, et al. Identification of potential key genes and pathways in early-onset colorectal cancer through bioinformatics analysis[J]. Cancer Control, 2019, 26(1): 1147266524. DOI: 10.1177/1073274819831260.
[7] Harada K, Okamoto W, Mimaki S, et al. Comparative sequence analysis of patient-matched primary colorectal cancer, metastatic, and recurrent metastatic tumors after adjuvant FOLFOX chemotherapy [J]. BMC Cancer, 2019, 19(1): 255. DOI: 10.1186/s12885-019-5479-6.
[8] Malka D, Lievre A, Andre T, et al. Immune scores in colorectal cancer: where are we?[J]. Eur J Cancer, 2020, 140: 105-118. DOI: 10.1016/j.ejca.2020.08.024.
[9] Kishore C, Bhadra P. Current advancements and future perspectives of immunotherapy in colorectal cancer research [J]. Eur J Pharmacol, 2021, 893: 173819. DOI: 10.1016/j.ejphar.2020.173819.
[10] Davis-Dusenbery B N, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation[J]. Arterioscler Thromb Vasc Biol, 2011,31(11): 2370-2377. DOI: 10.1161/ATVBAHA.111.226670.
[11] Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas (TCGA) [J]. Methods Mol Biol, 2016, 1418: 111-141. DOI: 10.1007/978-1-4939-3578-9_6.
[12] Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository[J]. Nucleic Acids Res, 2002, 30(1): 207-210. DOI: 10.1093/nar/30.1.207.
[13] Kanehisa M. The KEGG database[J]. Novartis Found Symp, 2002, 247: 91-101, 101-103, 119-128, 244-252.
[14] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nat Genet, 2000,25(1): 25-29. DOI: 10.1038/75556.
[15] Subramanian A, Tamayo P, Mootha V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles [J]. Proc Natl Acad Sci U S A, 2005,102(43): 15545-15550. DOI: 10.1073/pnas.0506580102.
[16] Johdi NA, Sukor NF. Colorectal cancer immunotherapy: options and strategies[J]. Front Immunol, 2020, 11: 1624. DOI: 10.3389/fimmu.2020.01624.
[17] Ganesh K, Stadler ZK, Cercek A, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential[J]. Nat Rev Gastroenterol Hepatol, 2019,16(6): 361-375. DOI: 10.1038/s41575-019-0126-x.
[18] Wang X, Duanmu J, Fu X, et al. Analyzing and validating the prognostic value and mechanism of colon cancer immune microenvironment [J]. J Transl Med, 2020, 18(1): 324. DOI: 10.1186/s12967-020-02491-w.
[19] 高亚东,屈亚威,刘海峰. 结直肠腺瘤的加权基因共表达网络构建与分析[J]. 中华灾害救援医学,2019,7(1):31-36. DOI:10.13919/j.issn.2095-6274.2019.01.008.
[20] Shin MH, Kim J, Lim SA, et al. Current insights into combination therapies with MAPK inhibitors and immune checkpoint blockade [J]. Int J Mol Sci, 2020,21(7): 2531. DOI: 10.3390/ijms21072531.
[21] You L, Wu W, Wang X, et al. The role of hypoxia-inducible factor 1 in tumor immune evasion[J]. Med Res Rev, 2021,41(3):1622-1643. DOI: 10.1080/15476286.2019. 1649585.
[22] Shay JE, Imtiyaz HZ, Sivanand S, et al. Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer[J]. Carcinogenesis, 2014,35(5): 1067-1077. DOI: 10.1093/carcin/bgu004.
[23] O'Donnell JS, Massi D, Teng M, et al. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux[J]. Semin Cancer Biol, 2018, 48: 91-103. DOI: 10.1016/j.semcancer.2017.04.015.
[24] Edin S, Kaprio T, Hagstrom J, et al. The prognostic importance of CD20(+) B lymphocytes in colorectal cancer and the relation to other immune cell subsets[J]. Sci Rep, 2019, 9(1): 19997. DOI: 10.1038/s41598-019- 56441-8.
[25] Olesch C, Sirait-Fischer E, Berkefeld M, et al. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion[J]. J Clin Invest, 2020, 130(10): 5461-5476. DOI: 10.1172/JCI136928.
[26] Brightman SE, Naradikian MS, Miller AM, et al. Harnessing neoantigen specific CD4 T cells for cancer immunotherapy [J]. J Leukoc Biol, 2020,107(4): 625-633. DOI: 10.1002/JLB.5RI0220-603RR.
[27] Mizuno R, Kawada K, Itatani Y, et al. The role of tumor-associated neutrophils in colorectal cancer[J]. Int J Mol Sci, 2019,20(3): 529. DOI: 10.3390/ijms20030529.
[28] Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15: 123-147. DOI: 10.1146/annurev- pathmechdis-012418-012718.
[29] Najafi M, Hashemi GN, Farhood B, et al. Macrophage polarity in cancer: a review[J]. J Cell Biochem, 2019,120(3): 2756-2765. DOI: 10.1002/jcb.27646.
[30] Zhang X, Sun Y, Ma Y, et al. Tumor-associated M2 macrophages in the immune microenvironment influence the progression of renal clear cell carcinoma by regulating M2 macrophage-associated genes[J]. Front Oncol, 2023, 13: 1157861. DOI: 10.3389/fonc. 2023.1157861.
[31] Sun X, Zhang Q, Shu P, et al. COLEC12 promotes tumor progression and is correlated with poor prognosis in gastric cancer [J]. Technol Cancer Res Treat, 2023, 22: 2071007245. DOI: 10.1177/15330338231218163.
[32] Xu Y P, Lv L, Liu Y, et al. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy [J]. J Clin Invest, 2019,129(10): 4316-4331. DOI: 10.1172/JCI129317.
[33] Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, et al. The role of toll-like receptor 4 (TLR4) in cancer progression: a possible therapeutic target? [J]. J Cell Physiol, 2021,236(6): 4121-4137. DOI: 10.1002/jcp.30166.
[34] Mokhtari Y, Pourbagheri-Sigaroodi A, Zafari P, et al. Toll-like receptors (TLRs): an old family of immune receptors with a new face in cancer pathogenesis[J]. J Cell Mol Med, 2021, 25(2): 639-651. DOI: 10.1111/jcmm.16214.
[35] Jiang K, Chen H, Fang Y, et al. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness[J]. J Exp Clin Cancer Res, 2021, 40(1): 21. DOI: 10.1186/s13046-020-01816-3.
[36] Wang W, Xu C, Ren Y, et al. A novel cancer stemness-related signature for predicting prognosis in patients with colon adenocarcinoma[J]. Stem Cells Int, 2021:7036059. DOI: 10.1155/2021/7036059.
|