[1] Siegel RL, Miller KD, Jemal A. Cancer
statistics, 2018[J]. CA Cancer J Clin, 2018,68(1):7-30. DOI:
10.3322/caac.21442.
[2] Siegel
RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin,
2019,69(1):7-34. DOI: 10.3322/caac.21551.
[3] Li
Y, Ge D, Gu J, et al. A large cohort study identifying a novel prognosis
prediction model for lung adenocarcinoma through machine learning
strategies[J]. BMC Cancer, 2019,19(1):886. DOI: 10.1186/s12885-019-6101-7.
[4] Jiang
N, Xu X. Exploring the survival prognosis of lung adenocarcinoma based on the
cancer genome atlas database using artificial neural network[J]. Medicine
(Baltimore), 2019,98(20):e15642. DOI: 10.1097/MD.0000000000015642.
[5] Zhang
Y, Chang L, Yang Y, et al. Intratumor heterogeneity comparison among different
subtypes of non-small-cell lung cancer through multi-region tissue and matched
ctDNA sequencing[J]. Mol Cancer, 2019,18(1):7. DOI: 10.1186/s12943-019-0939-9.
[6] Murphy
LA, Sarge KD. Phosphorylation of CAP-G is required for its chromosomal DNA
localization during mitosis[J]. Biochem Biophys Res Commun,
2008,377(3):1007-1011. DOI: 10.1016/j.bbrc.2008.10.114.
[7] Dorman
CJ, Dorman MJ. DNA supercoiling is a fundamental regulatory principle in the
control of bacterial gene expression[J]. Biophys Rev, 2016,8 Suppl 1:89-100.
DOI: 10.1007/s12551-016-0238-2.
[8] Li
M, He F, Zhang Z, et al. CDK1 serves as a potential prognostic biomarker and
target for lung cancer[J]. J Int Med Res, 2020,48(2):300060519897508. DOI:
10.1177/0300060519897508.
[9] Enserink
JM, Kolodner RD. An overview of Cdk1-controlled targets and processes[J]. Cell
Div, 2010,5:11. DOI: 10.1186/1747-1028-5-11.
[10] Malumbres
M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nat Rev
Cancer, 2009,9(3):153-166. DOI: 10.1038/nrc2602.
[11] Santamaría D, Barrière C, Cerqueira A, et al. Cdk1 is
sufficient to drive the mammalian cell cycle[J]. Nature,
2007,448(7155):811-815. DOI: 10.1038/nature06046.
[12] Faustino-Rocha A, Oliveira PA,
Pinho-Oliveira J, et al. Estimation of rat mammary tumor volume using caliper
and ultrasonography measurements[J]. Lab Anim (NY), 2013,42(6):217-224. DOI:
10.1038/laban.254.
[13] Evan GI, Vousden KH. Proliferation, cell
cycle and apoptosis in cancer[J]. Nature, 2001,411(6835):342-348. DOI:
10.1038/35077213.
[14] Hirano M, Hirano T. Opening closed arms:
long-distance activation of SMC ATPase by hinge-DNA interactions[J]. Mol Cell,
2006,21(2):175-186. DOI: 10.1016/j.molcel.2005.11.026.
[15] Gerlich D, Hirota T, Koch B, et al.
Condensin I stabilizes chromosomes mechanically through a dynamic interaction
in live cells[J]. Curr Biol, 2006,16(4):333-344. DOI:
10.1016/j.cub.2005.12.040.
[16] Csankovszki G, Collette K, Spahl K, et
al. Three distinct condensin complexes control C. elegans chromosome
dynamics[J]. Curr Biol, 2009,19(1):9-19. DOI: 10.1016/j.cub.2008.12.006.
[17] Hirota T, Gerlich D, Koch B, et al.
Distinct functions of condensin I and II in mitotic chromosome assembly[J]. J
Cell Sci, 2004,117(Pt 26):6435-6445. DOI: 10.1242/jcs.01604.
[18] Nishide K, Hirano T. Overlapping and
non-overlapping functions of condensins I and II in neural stem cell
divisions[J]. PLoS Genet, 2014,10(12):e1004847. DOI:
10.1371/journal.pgen.1004847.
[19] Hirano T. Condensins: organizing and
segregating the genome[J]. Curr Biol, 2005,15(7):R265-275. DOI:
10.1016/j.cub.2005.03.037.
[20] Klebanow LR, Peshel EC, Schuster AT, et
al. Drosophila condensin II subunit chromosome-associated protein D3 regulates
cell fate determination through non-cell-autonomous signaling[J]. Development,
2016,143(15):2791-802. DOI: 10.1242/dev.133686.
[21] Barnhart-Dailey MC, Trivedi P,
Stukenberg PT, et al. HJURP interaction with the condensin II complex during G1
promotes CENP-A deposition[J]. Mol Biol Cell, 2017,28(1):54-64. DOI:
10.1091/mbc.E15-12-0843.
[22] Rosin LF, Nguyen SC, Joyce EF. Condensin
II drives large-scale folding and spatial partitioning of interphase
chromosomes in Drosophila nuclei[J]. PLoS Genet, 2018,14(7):e1007393. DOI:
10.1371/journal.pgen.1007393.
[23] Green LC, Kalitsis P, Chang TM, et al.
Contrasting roles of condensin I and condensin II in mitotic chromosome
formation[J]. J Cell Sci, 2012,125(Pt 6):1591-1604. DOI: 10.1242/jcs.097790.
[24] Ono T, Sakamoto C, Nakao M, et al.
Condensin II plays an essential role in reversible assembly of mitotic
chromosomes in situ[J]. Mol Biol Cell, 2017,28(21):2875-2886. DOI:
10.1091/mbc.E17-04-0252.
[25] Arai T, Okato A, Yamada Y, et al.
Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell
aggressiveness and is involved in CRPC[J]. Cancer Med, 2018,7(5):1988-2002.
DOI: 10.1002/cam4.1455.
[26] Goto Y, Kurozumi A, Arai T, et al.
Impact of novel miR-145-3p regulatory networks on survival in patients with
castration-resistant prostate cance[J]r. Br J Cancer, 2017,117(3):409-420. DOI:
10.1038/bjc.2017.191.
[27] Yamamoto S, Takayama KI, Obinata D, et
al. Identification of new octamer transcription factor 1-target genes
upregulated in castration-resistant prostate cancer[J]. Cancer Sci,
2019,110(11):3476-3485. DOI: 10.1111/cas.14183.
[28] Gong C, Ai J, Fan Y, et al. NCAPG
Promotes The proliferation of hepatocellular carcinoma through PI3K/AKT
signaling[J]. Onco Targets Ther, 2019,12:8537-8552. DOI: 10.2147/OTT.S217916.
[29] Zhang Q, Su R, Shan C, et al. Non-SMC
Condensin I complex, subunit G (NCAPG) is a novel mitotic gene required for
hepatocellular cancer cell proliferation and migration[J]. Oncol Res,
2018,26(2):269-276. DOI: 10.3727/096504017X15075967560980.
[30] Wang Y, Gao B, Tan PY, et al. Genome-wide
CRISPR knockout screens identify NCAPG as an essential oncogene for
hepatocellular carcinoma tumor growth[J]. FASEB J, 2019,33(8):8759-8770. DOI:
10.1096/fj.201802213RR.
[31] Ding X, Duan H, Luo H. Identification of
core gene expression signature and key pathways in colorectal cancer[J]. Front
Genet, 2020, 11:45. DOI: 10.3389/fgene.2020.00045.
[32] Song B, Du J, Song DF, et al.
Dysregulation of NCAPG, KNL1, miR-148a-3p, miR-193b-3p, and miR-1179 may
contribute to the progression of gastric cancer[J]. Biol Res, 2018,51(1):44.
DOI: 10.1186/s40659-018-0192-5.
[33] Liu J, Feng M, Li S, et al.
Identification of molecular markers associated with the progression and
prognosis of endometrial cancer: a bioinformatic study[J]. Cancer Cell Int,
2020,20:59. DOI: 10.1186/s12935-020-1140-3.
[34] Zhang W, Gao L, Wang C, et al. Combining
bioinformatics and experiments to identify and verify key genes with prognostic
values in endometrial carcinoma[J]. J Cancer, 2020,11(3):716-732. DOI:
10.7150/jca.35854.
[35] Zhang H, Zou J, Yin Y, et al.
Bioinformatic analysis identifies potentially key differentially expressed
genes in oncogenesis and progression of clear cell renal cell carcinoma[J].
PeerJ, 2019,7:e8096. DOI: 10.7717/peerj.8096.
[36] Wei W, Lv Y, Gan Z, et al.
Identification of key genes involved in the metastasis of clear cell renal cell
carcinoma[J]. Oncol Lett, 2019,17(5):4321-4328. DOI: 10.3892/ol.2019.10130.
[37] Yamada Y, Arai T, Kojima S, et al.
Regulation of antitumor miR-144-5p targets oncogenes: direct regulation of
syndecan-3 and its clinical significance[J]. Cancer Sci,2018,109(9):2919-2936.
DOI: 10.1111/cas.13722.
[38] Li S, Xuan Y, Gao B, et al.
Identification of an eight-gene prognostic signature for lung
adenocarcinoma[J]. Cancer Manag Res, 2018,10:3383-3392. DOI:
10.2147/CMAR.S173941.
[39] Liu W, Liang B, Liu H,et al.
Overexpression of non‑SMC condensin I complex subunit G serves as a promising
prognostic marker and therapeutic target for hepatocellular carcinoma[J]. Int J
Mol Med, 2017,40(3):731-738. DOI: 10.3892/ijmm.2017.3079.
[40] Kimura K, Cuvier O, Hirano T. Chromosome
condensation by a human condensin complex in Xenopus egg extracts[J]. J Biol
Chem, 2001,276(8):5417-5420. DOI: 10.1074/jbc.C000873200.
|