国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (6): 973-978.DOI: 10.3760/cma.j.cn441417-20240910-06018

• 论著 • 上一篇    下一篇

基于随机森林的多模态神经电生理指标预测老年脑卒中患者衰弱风险模型研究

张晓雯1  秦丽云1  陈文倩1  孙毅2   

  1. 1山东第一医科大学附属东平医院神经电生理科,泰安 271500;2滕州市中心人民医院药剂科,枣庄 277599

  • 收稿日期:2024-09-10 出版日期:2025-03-15 发布日期:2025-03-17
  • 通讯作者: 张晓雯,Email:ZXW19780404@163.com
  • 基金资助:

    山东省中医药科技发展计划(2019-0661)

A random forest-based multimodal neural electrophysiological index model for predicting frailty risk in elderly patients with stroke

Zhang Xiaowen1, Qin Liyun1, Chen Wenqian1, Sun Yi2   

  1. 1 Department of Neuroelectrophysiology, Dongping Hospital, Shandong First Medical University, Tai 'an 271500, China; 2 Department of Pharmacy, Tengzhou Central People's Hospital, Zaozhuang 277599, China

  • Received:2024-09-10 Online:2025-03-15 Published:2025-03-17
  • Contact: Zhang Xiaowen, Email: ZXW19780404@163.com
  • Supported by:

    Shandong Province Traditional Chinese Medicine Science and Technology Development Plan (2019-0661)

摘要:

目的 构建基于多模态神经电生理指标的老年脑卒中患者衰弱风险预测模型,探索其在早期干预中的应用价值。方法 采用回顾性分析,选取2021年1月至2023年1月山东第一医科大学附属东平医院收治的265例老年首次急性脑卒中住院患者,男148例、女117例,年龄(70.42±8.63)岁,缺血性卒中220例、出血性卒中45例,收集基线资料及神经电生理指标。采用Fried衰弱表型量表评估衰弱状态,使用独立样本t检验、秩和检验、χ2检验进行单因素分析,logistic回归进行多因素分析。采用随机森林算法构建预测模型并与logistic回归模型进行比较。结果 265例患者分为训练组212例,验证组53例,两组一般特征、临床指标、实验室检查和神经电生理指标等基线资料比较,差异均无统计学意义(均P>0.05)。衰弱组98例、非衰弱组167例,两组患者年龄、美国国立卫生研究院卒中量表(NIHSS)评分、白蛋白、神经电生理指标及功能、认知评分等比较,差异均有统计学意义(均P<0.05)。多因素分析显示,基线NIHSS评分(OR=1.17)、蒙特利尔认知评估量表(MoCA)评分(OR=0.87)、年龄(OR=1.09)、经颅磁刺激(TMS)皮质静息期(OR=1.11)、白蛋白(OR=0.89)、定量脑电图(qEEG)δ波功率(OR=1.05)和老年抑郁评估量表(GDS-15)评分(OR=1.18)是脑卒中后衰弱的独立预测因子(均P<0.05)。随机森林模型受试者操作特征曲线(ROC)的曲线下面积(AUC=0.728)高于多因素logistic回归模型(AUC=0.629),P=0.029。结论 整合多模态神经电生理指标和临床特征可显著提高老年脑卒中后衰弱的预测精度。

关键词:

脑卒中, 老年, 衰弱, 神经电生理, 预测模型, 随机森林, Logistics回归

Abstract:

Objective To construct a prediction model of frailty risk in elderly patients with stroke based on multimodal neuroelectrophysiological indicators, and to explore its application value in early intervention. Methods This was retrospective study. Two hundred and sixty-five elderly patients with first acute stroke treated at Dongping Hospital, Shandong First Medical University from January 2021 to January 2023 were selected, including 148 males and 117 females. They were (70.42±8.63) years old. There were 220 cases of ischemic stroke and 45 cases of hemorrhagic stroke. Their baseline data and neurophysiological indicators were collected. The fried frailty phenotype was used to evaluate their frailty status. Independent-sample t test, rank sum test, and χ2 test were used for the univariate analysis. The logistic regression was used for the multivariate analysis. The random forest algorithm was used to construct a prediction model and compared with the logistic regression model. Results Among the 265 patients, there were 212 cases in the training group and 53 cases in the testing group; there were no statistical differences in the general features, clinical data, laboratory examination, and neuroelectrophysiological indicators between the two groups (all P>0.05). There were 98 cases in the frailty group and 167 cases in the non-frailty group; there were statistical differences in the age, score of National Institute of Health stroke scale (NIHSS), albumin, neuroelectrophysiological indicators, and scores of function and cognition between the two groups (all P<0.05). The multivariate analysis showed that the baseline score of NIHSS (OR=1.17), score of Montreal Cognitive Assessment (MoCA) (OR=0.87), age (OR=1.09), transcranial magnetic stimulation (TMS) cortical resting period (OR=1.11), albumin (OR=0.89), quantitative electroencephalography (qEEG) δ wave power (OR=1.05), and score of Geriatric Depression Scale (GDS-15) (OR=1.18 ) were the independent predictors of frailty after stroke (all P<0.05). The area under the receiver operating characteristic curve (ROC) of the random forest model was significantly higher than that of the multivariate logistic regression model (0.728 vs. 0.629, P=0.029). Conclusion The integration of multimodal neuroelectrophysiological indicators and clinical features can significantly improve the prediction accuracy of post-stroke fraility.

Key words:

Stroke, Elderly, Frailty, Neuroelectrophysiology, Prediction model, Random forest, Logistic regression