国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (6): 908-913.DOI: 10.3760/cma.j.cn441417-20240717-06006

• 消化道疾病 • 上一篇    下一篇

利用双向孟德尔随机化方法探讨失眠与便秘的关系

肖正平1  肖曦2  李保松1  张智睿1  蒋宏1   

  1. 1滨州医学院附属医院结直肠疝外科,滨州 256603;2滨州医学院附属医院全科医学科,滨州 256603

  • 收稿日期:2024-07-17 出版日期:2025-03-15 发布日期:2025-03-17
  • 通讯作者: 蒋宏,Email:byfyjzcjh@126.com
  • 基金资助:

    国家卫生健康委科技发展中心“微创手术临床应用规范化研究”课题(WA2021RW12);滨州医学院科研计划(BY2021KJ35)

Exploration on causal relationship between insomnia and constipation by bidirectional Mendelian randomization approach

Xiao Zhengping1, Xiao Xi2, Li Baosong1, Zhang Zhirui1, Jiang Hong1   

  1. 1 Department of Colorectal and Hernial Surgery, Binzhou Medical University Hospital, Binzhou 256603, China; 2 Department of General Medicine, Binzhou Medical University Hospital, Binzhou 256603, China

  • Received:2024-07-17 Online:2025-03-15 Published:2025-03-17
  • Contact: Jiang Hong, Email: byfyjzcjh@126.com
  • Supported by:

    Project for "Standardized Research of Clinical Application of Microinvasive Surgery" Supported by Center for Development of Science and Technology of National Health Commission (WA2021RW12); Scientific Research Plan of Binzhou Medical University (BY2021KJ35)

摘要:

目的 利用双向孟德尔随机化(Mendelian randomization,MR)方法探索失眠与便秘的因果关系。方法 本研究采用双向MR分析。检索时限为建库至2024年7月。从IEU Open GWAS project提供的大型全基因组关联研究(genome-wide association study,GWAS)数据库中提取失眠(4 462 341例)和便秘(411 623例)的数据。通过关联性分析、去除连锁不平衡以及去除弱工具变量筛选出分别与失眠及便秘高度相关的单核苷酸多态性(single nucleotide polymorphisms,SNPs)作为工具变量(instrumental variables,IVs)。以逆方差加权(inverse-variance weighted,IVW)方法为主要分析方法,以MR-Egger回归法、加权中位数法、简单模式为补充分析方法评估两者的因果效应。对IVs进行异质性和多效性检验,使用IVW方法和MR-Egger回归法的Cochran Q检验进行异质性分析;采用MR-Egger回归截距和MR-PRESSO分析方法进行多效性检验。使用留一法敏感性分析评估结果的稳健性。结果 在符合MR假设的IVs支持下,IVW分析结果表明失眠可增加便秘的患病风险(OR=1.684,95%CI 1.107~2.560,P=0.015),而便秘对失眠的影响无统计学意义(P>0.05)。该结果提示失眠可能是便秘患病的危险因素。结论 失眠可增加便秘的患病风险,而在反向MR中未发现便秘与失眠存在因果关系。

关键词:

失眠, 便秘, 孟德尔随机化, 因果关系, 遗传流行病学

Abstract:

Objective To investigate the causal relationship between insomnia and constipation using the bidirectional Mendelian randomization (MR) approach. Methods The bidirectional MR analysis was conducted. The data from the large-scale genome-wide association study (GWAS) database of the IEU Open GWAS project was extracted from its establishment to July 2024. This encompassed the data on insomnia (4 462 341 cases) and constipation (411 623 cases). The instrumental variables (IVs) highly associated with insomnia and constipation were selected based on association analyses, after addressing linkage disequilibrium, and removing weak instruments. The inverse variance-weighted (IVW) method was the primary analytical technique, and supplemented by MR-Egger regression, the weighted median approach, and simple mode analysis to evaluate the causal effects between the two traits. Additionally, the heterogeneity and pleiotropy of the IVs were assessed with the IVW and MR-Egger's Cochran Q test for heterogeneity, and with MR-Egger regression intercept and MR-PRESSO for pleiotropy examination. The leave-one-out sensitivity analysis was employed to assess the robustness of the results. Results Under the support of IVs conforming to MR assumptions, the IVW analysis indicated that insomnia increases the risk of constipation (OR=1.684, 95%CI 1.107-2.560, P=0.015); on the other hand, the causal effect of constipation on insomnia was not statistically significant (P>0.05). The results suggest that insomnia may be a risk factor for constipation. Conclusions Insomnia may increase the risk of constipation. Conversely, no causal association is found for constipation leading to insomnia.

Key words:

Insomnia, Constipation, Mendelian randomization, Causal relationship, Genetic epidemiology